1
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
2
|
Wang Z, Mao Y, Liang L, Pedro GC, Zhi L, Li P, Hu X. HFR1 antagonizes ABI4 to coordinate cytosolic redox status for seed germination under high-temperature stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14490. [PMID: 39169549 DOI: 10.1111/ppl.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Seed germination and dormancy represent critical phases in the life cycle of plants, tightly regulated by endogenous phytochrome levels and environment signals. High temperatures (HT) induce the overaccumulation of reactive oxygen species (ROS) and increase abscisic acid (ABA), thereby inhibiting seed germination. Our previous findings showed that HT induced the burst of reactive nitrogen species (RNS), increasing the S-nitrosylation modification of HFR1, which effectively blocks seed germination. Importantly, stabilizing HFR1 has been shown to significantly mitigate the inhibitory effect of HT on seed germination. In this study, we reported that HT increased the protein abundance of ABI4, a crucial component in ABA signaling, which in turn activates the expression of RbohD while suppressing the expression of VTC2. This leads to the rapid generation of ROS, thereby inhibiting seed germination. Consistently, the seed germination of abi4 mutant showed insensitivity to HT with lower ROS level during seed germination, whereas transgenic lines overexpressing ABI4 showed reduced germination rates accompanied by elevated ROS levels. Furthermore, we noted that HFR1 interacts with ABI4 to sequester its activity under normal conditions. However, HT-induced ROS triggered the degradation of HFR1, consequently releasing ABI4 activity. This activation of ABI4 promotes RbohD expression, culminating in a ROS burst that suppresses seed germination. Thus, our study unveils a novel function for ABI4 in regulating ROS level and seed germination under HT stress. Throughout this process, HFR1 plays a critical role in restraining ABI4 activity to maintain an optimal endogenous ROS level, thereby ensuring seed germination under favorable environmental conditions.
Collapse
Affiliation(s)
- Zhangcheng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yan Mao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Liang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | | | - Lulu Zhi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Liu Q, Gao G, Shang C, Li T, Wang Y, Li L, Feng X. Screening and verification of proteins that interact with the anthocyanin-related transcription factor PbrMYB114 in 'Yuluxiang' pear. PeerJ 2024; 12:e17540. [PMID: 38887620 PMCID: PMC11182023 DOI: 10.7717/peerj.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ge Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen Shang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Tong Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Yadong Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
4
|
Liu Z, Wang L, Li Y, Zhu J, Li Z, Chen L, Li H, Shi T, Yao P, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-wide analysis of the U-box E3 ligases gene family in potato (Solanum tuberosum L.) and overexpress StPUB25 enhance drought tolerance in transgenic Arabidopsis. BMC Genomics 2024; 25:10. [PMID: 38166714 PMCID: PMC10759479 DOI: 10.1186/s12864-023-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Wang
- Hebei North University, Zhangjiakou, 075000, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyang Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianbin Shi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Tian J, Zhang J, Francis F. The role and pathway of VQ family in plant growth, immunity, and stress response. PLANTA 2023; 259:16. [PMID: 38078967 DOI: 10.1007/s00425-023-04292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION This review provides a detailed description of the function and mechanism of VQ family gene, which is helpful for further research and application of VQ gene resources to improve crops. Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of the VQ gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolution of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses. Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here, we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and the current problems and future prospects were pointed out, providing a powerful reference for further research and utilization of VQ genes in plant improvement.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| |
Collapse
|
6
|
Nguyen NH, Sng BJR, Chin HJ, Choi IKY, Yeo HC, Jang IC. HISTONE DEACETYLASE 9 promotes hypocotyl-specific auxin response under shade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:804-822. [PMID: 37522556 DOI: 10.1111/tpj.16410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hui Jun Chin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hock Chuan Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Kang H, Zhang TT, Li YY, Lin-Wang K, Espley RV, Du YP, Guan QM, Ma FW, Hao YJ, You CX, Wang XF. The apple BTB protein MdBT2 positively regulates MdCOP1 abundance to repress anthocyanin biosynthesis. PLANT PHYSIOLOGY 2022; 190:305-318. [PMID: 35674376 PMCID: PMC9434159 DOI: 10.1093/plphys/kiac279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Hui Kang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert, Auckland 92169, New Zealand
| | - Yuan-Peng Du
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
8
|
Nguyen NH, Sng BJR, Yeo HC, Jang IC. Comparative phenotypic and transcriptomic analyses unravel conserved and distinct mechanisms underlying shade avoidance syndrome in Brassicaceae vegetables. BMC Genomics 2021; 22:760. [PMID: 34696740 PMCID: PMC8546956 DOI: 10.1186/s12864-021-08076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plants grown under shade are exposed to low red/far-red ratio, thereby triggering an array of altered phenotypes called shade avoidance syndrome (SAS). Shade negatively influences plant growth, leading to a reduction in agricultural productivity. Understanding of SAS is crucial for sustainable agricultural practices, especially for high-density indoor farming. Brassicaceae vegetables are widely consumed around the world and are commonly cultivated in indoor farms. However, our understanding of SAS in Brassicaceae vegetables and their genome-wide transcriptional regulatory networks are still largely unexplored. Results Shade induced common signs of SAS, including hypocotyl elongation and reduced carotenoids/anthocyanins biosynthesis, in two different Brassicaceae species: Brassica rapa (Choy Sum and Pak Choy) and Brassica oleracea (Kai Lan). Phenotype-assisted transcriptome analysis identified a set of genes induced by shade in these species, many of which were related to auxin biosynthesis and signaling [e.g. YUCCA8 (YUC8), YUC9, and INDOLE-3-ACETIC ACID INDUCIBLE (IAAs)] and other phytohormones signaling pathways including brassinosteroids and ethylene. The genes functioning in plant defense (e.g. MYB29 and JASMONATE-ZIM-DOMAIN PROTEIN 9) as well as in biosynthesis of anthocyanins and glucosinolates were repressed upon shade. Besides, each species also exhibited distinct SAS phenotypes. Shade strongly reduced primary roots and elongated petioles of B. oleracea, Kai Lan. However, these SAS phenotypes were not clearly recognized in B. rapa, Choy Sum and Pak Choy. Some auxin signaling genes (e.g. AUXIN RESPONSE FACTOR 19, IAA10, and IAA20) were specifically induced in B. oleracea, while homologs in B. rapa were not up-regulated under shade. Contrastingly, shade-exposed B. rapa vegetables triggered the ethylene signaling pathway earlier than B. oleracea, Kai Lan. Interestingly, shade induced the transcript levels of LONG HYPOCOTYL IN FAR-RED 1 (HFR1) homolog in only Pak Choy as B. rapa. As HFR1 is a key negative regulator of SAS in Arabidopsis, our finding suggests that Pak Choy HFR1 homolog may also function in conferring higher shade tolerance in this variety. Conclusions Our study shows that two Brassicaceae species not only share a conserved SAS mechanism but also exhibit distinct responses to shade, which will provide comprehensive information to develop new shade-tolerant cultivars that are suitable for high-density indoor farms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08076-1.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hock Chuan Yeo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Chen W, Zheng L, Dong J, Ge H, Huang X, Wang G, Huang C, Wang Y, Lu D, Xu W, Wang Y. A Systematic Survey of the Light/Dark-dependent Protein Degradation Events in a Model Cyanobacterium. Mol Cell Proteomics 2021; 20:100162. [PMID: 34655801 PMCID: PMC8603205 DOI: 10.1016/j.mcpro.2021.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022] Open
Abstract
Light is essential for photosynthetic organisms and is involved in the regulation of protein synthesis and degradation. The significance of light-regulated protein degradation is exemplified by the well-established light-induced degradation and repair of the photosystem II reaction center D1 protein in higher plants and cyanobacteria. However, systematic studies of light-regulated protein degradation events in photosynthetic organisms are lacking. Thus, we conducted a large-scale survey of protein degradation under light or dark conditions in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) using the isobaric labeling-based quantitative proteomics technique. The results revealed that 79 proteins showed light-regulated degradation, including proteins involved in photosystem II structure or function, quinone binding, and NADH dehydrogenase. Among these, 25 proteins were strongly dependent on light for degradation. Moreover, the light-dependent degradation of several proteins was sensitive to photosynthetic electron transport inhibitors (DCMU and DBMIB), suggesting that they are influenced by the redox state of the plastoquinone (PQ) pool. Together, our study comprehensively cataloged light-regulated protein degradation events, and the results serve as an important resource for future studies aimed at understanding light-regulated processes and protein quality control mechanisms in cyanobacteria. Light-/dark-regulated protein degradation events in a model Cyanobacterium were identified. Seventy-nine proteins displayed light-regulated degradation. Thirty-one proteins displayed dark-regulated degradation. Multiple light-regulated protein degradation events were regulated by the redox state of the plastoquinone pool.
Collapse
Affiliation(s)
- Weiyang Chen
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Kang H, Zhang TT, Fu LL, You CX, Wang XF, Hao YJ. The apple RING-H2 protein MdCIP8 regulates anthocyanin accumulation and hypocotyl elongation by interacting with MdCOP1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110665. [PMID: 33218632 DOI: 10.1016/j.plantsci.2020.110665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
COP1, an important RING ubiquitin ligase E3, is a molecular switch for light regulation in plant development. As an interacting protein of COP1, CIP8 contains a RING-H2 domain, but its biological function is unclear. Here, the apple MdCIP8 was identified based on its homology with AtCIP8 in Arabidopsis. MdCIP8 was constitutively expressed at different levels in various apple tissues, and the expression level of MdCIP8 was not affected by light and dark conditions. MdCIP8 reversed the short hypocotyl phenotype of the cip8 mutant under light conditions. Furthermore, the yeast two-hybrid experiment showed that MdCIP8 interacted with the RING domain of MdCOP1 through its RING-H2 domain. MdCIP8-OX/cop1-4 exhibited the phenotype of the cop1-4 mutant, indicating that CIP8 acts upstream of COP1. In addition, an apple transient injection experiment showed that MdCIP8 inhibited anthocyanin accumulation in an MdCOP1-dependent pathway. Overall, our findings reveal that CIP8 plays an inhibitory role in the light-regulation responses of plants.
Collapse
Affiliation(s)
- Hui Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yang-Ling, Shaanxi, 712100, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Lu-Lu Fu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
11
|
Analysis of the circadian transcriptome of the Antarctic krill Euphausia superba. Sci Rep 2019; 9:13894. [PMID: 31554872 PMCID: PMC6761102 DOI: 10.1038/s41598-019-50282-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a high latitude pelagic organism which plays a central role in the Southern Ocean ecosystem. E. superba shows daily and seasonal rhythms in physiology and behaviour, which are synchronized with the environmental cycles of its habitat. Recently, the main components of the krill circadian machinery have been identified and characterized. However, the exact mechanisms through which the endogenous timing system operates the control and regulation of the overt rhythms remains only partially understood. Here we investigate the involvement of the circadian clock in the temporal orchestration of gene expression by using a newly developed version of a krill microarray platform. The analysis of transcriptome data from krill exposed to both light-dark cycles (LD 18:6) and constant darkness (DD), has led to the identification of 1,564 putative clock-controlled genes. A remarkably large proportion of such genes, including several clock components (clock, period, cry2, vrille, and slimb), show oscillatory expression patterns in DD, with a periodicity shorter than 24 hours. Energy-storage pathways appear to be regulated by the endogenous clock in accordance with their ecological relevance in daily energy managing and overwintering. Our results provide the first representation of the krill circadian transcriptome under laboratory, free-running conditions.
Collapse
|
12
|
Zhou T, Song B, Liu T, Shen Y, Dong L, Jing S, Xie C, Liu J. Phytochrome F plays critical roles in potato photoperiodic tuberization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:42-54. [PMID: 30552774 DOI: 10.1111/tpj.14198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F (StPHYF) played essential roles in photoperiodic tuberization in potato. By suppressing the StPHYF gene, the strict short-day potato genotype exhibited normal tuber formation under long-day (LD) conditions, together with the degradation of the CONSTANTS protein StCOL1 and modulation of two FLOWERING LOCUS T (FT) paralogs, as demonstrated by the repression of StSP5G and by the activation of StSP6A during the light period. The function of StPHYF was further confirmed through grafting the scion of StPHYF-silenced lines, which induced the tuberization of untransformed stock under LDs, suggesting that StPHYF was involved in the production of mobile signals for tuberization in potato. We also identified that StPHYF exhibited substantial interaction with StPHYB both in vitro and in vivo. Therefore, our results indicate that StPHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with StPHYB.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Tengfei Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Yunlong Shen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Liepeng Dong
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shenglin Jing
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| |
Collapse
|
13
|
Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 2016; 7:11545. [PMID: 27173885 PMCID: PMC4869175 DOI: 10.1038/ncomms11545] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2016] [Indexed: 11/15/2022] Open
Abstract
It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. Phytochromes regulate plant responses to environmental light conditions but despite extensive research the initial events in phytochrome signaling remain uncertain. Here, Shin et al. provide evidence that phytochrome phosphorylates target proteins via kinase activity in the N-terminal core domain.
Collapse
|
14
|
Kim JY, Jang IC, Seo HS. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1182. [PMID: 27536318 PMCID: PMC4971112 DOI: 10.3389/fpls.2016.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 05/22/2023]
Abstract
Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.
Collapse
Affiliation(s)
- Joo Y. Kim
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, SingaporeSingapore
| | - Hak S. Seo
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
- *Correspondence: Hak S. Seo,
| |
Collapse
|
15
|
Zhang HN, Li WC, Wang HC, Shi SY, Shu B, Liu LQ, Wei YZ, Xie JH. Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litchi. FRONTIERS IN PLANT SCIENCE 2016; 7:963. [PMID: 27446187 PMCID: PMC4925703 DOI: 10.3389/fpls.2016.00963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/16/2016] [Indexed: 05/20/2023]
Abstract
Light is a key environmental factor that affects anthocyanin biosynthesis. To enhance our understanding of the mechanisms involved in light-regulated anthocyanin biosynthesis in the pericarp of litchi, we performed transcriptomic analyses on the basis of Illumina sequencing. Fruit clusters were bagged with double-layer Kraft paper bags at 42 days after anthesis. The bags were removed after 2 weeks. Under light conditions, anthocyanins accumulated rapidly in the pericarp. RNA sequences were de novo assembled into 75,935 unigenes with an average length of 913 bp. Approximately 74.5% of unigenes (56,601) were annotated against four public protein databases. A total of 16,622 unigenes that significantly differed in terms of abundance were identified. These unigenes are implicated in light signal perception and transduction, flavonoid biosynthesis, carotenoid biosynthesis, plant hormone signal transduction, and photosynthesis. In photoreceptors, the expression levels of UV RESISTANCE LOCUS 8 (UVR8), Phototropin 2 (PHOT2), Phytochrome B (PHYB), and Phytochrome C (PHYC) increased significantly when the fruits were exposed to light. This result indicated that they likely play important roles in anthocyanin biosynthesis regulation. After analyzed digital gene expression (DGE), we found that the light signal transduction elements of COP1 and COP10 might be responsible for anthocyanin biosynthesis regulation. After the bags were removed, nearly all structural and regulatory genes, such as UDP-glucose: flavonoid-3-O-glucosyltransferase (UFGT), MYB, basic helix-loop-helix (bHLH), and WD40, involved in the anthocyanin biosynthetic pathway were upregulated. In addition to MYB-bHLH-WD40 transcription complex, ELONGATED HYPOCOTYL (HY5), NAM/ATAF/CUC (NAC), homeodomain leucine zipper proteins (ATHBs), and FAR-RED ELONGATED HYPOCOTYL (FHY) possibly participate in light-induced responses. On the basis of DGEs and qRT-PCR validation, we observed a light-induced anthocyanin biosynthesis and regulation pattern in litchi pericarp. This study enhanced our understanding of the molecular mechanisms governing light-induced anthocyanin biosynthesis in litchi pericarp.
Collapse
Affiliation(s)
- Hong-Na Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Wei-Cai Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Hui-Cong Wang
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Sheng-You Shi
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Li-Qin Liu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Yong-Zan Wei
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- *Correspondence: Yong-Zan Wei, ; Jiang-Hui Xie,
| | - Jiang-Hui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- *Correspondence: Yong-Zan Wei, ; Jiang-Hui Xie,
| |
Collapse
|
16
|
Zhu L, Xin R, Huq E. A Protein-Based Genetic Screening Uncovers Mutants Involved in Phytochrome Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1086. [PMID: 27499759 PMCID: PMC4956648 DOI: 10.3389/fpls.2016.01086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Plants perceive red and far-red region of the light spectrum to regulate photomorphogenesis through a family of photoreceptors called phytochromes. Phytochromes transduce the light signals to trigger a cascade of downstream gene regulation in part via a subfamily of bHLH transcription factors called Phytochrome Interacting Factors (PIFs). As the repressors of light signaling pathways, most PIFs are phosphorylated and degraded through the ubiquitin/26S proteasome pathway in response to light. The mechanisms involved in the phosphorylation and degradation of PIFs have not been fully understood yet. Here we used an EMS mutagenesis and luminescent imaging system to identify mutants defective in the degradation of one of the PIFs, called PIF1. We identified five mutants named stable PIF (spf) that showed reduced degradation of PIF1 under light treatment in both luminescent imaging and immunoblot assays. The amounts of PIF1 in spf3, spf4, and spf5 were similar to a PIF1 missense mutant (PIF1-3M) that lacks interactions between PIF1 and phyA/phyB under light. The hypocotyl lengths of spf1 and spf2 were slightly longer under red light compared to the LUC-PIF1 control, while only spf1 displayed weak phenotype under far-red light conditions. Interestingly, the spf3, spf4, and spf5 displayed high abundance of PIF1, yet the hypocotyl lengths were similar to the wild type under these conditions. Cloning and characterization of these mutants will help identify key players in the light signaling pathways including, the light-regulated kinase(s) and the E3 ligase(s) necessary for the light-induced degradation of PIFs.
Collapse
|
17
|
Abstract
Plants use light as an indicator of time and space as well as the major energy source for photosynthesis. Due to the development of specific photoreceptors, plants can perceive a wide range of wavelengths and adjust their development accordingly to their surroundings. In addition to light, the circadian clock allows the anticipation of diurnal and seasonal changes thus providing organisms with the adequate physiological responses to ever changing surroundings, which are reflected in increased fitness and survival rate. Although initially described as a set of interconnected transcriptional loops, it is now accepted that posttranslational modifications are also important for proper clock function. In fact, not only the clock but also light signaling rely on posttranslational modifications, such as phosphorylation and ubiquitination, for proper signal transduction. We have designed a simple and yet reproducible method to determine protein stability and half-life under different light and circadian conditions. Our method only requires standard laboratory equipment, a relatively small amount of starting material and can be applied to young seedlings and mature plants. Besides our application to study light and circadian clock proteins, this protocol can be adapted to any other conditions that regulate protein stability.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Rossana Henriques
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain.
| |
Collapse
|
18
|
Twilight, a Novel Circadian-Regulated Gene, Integrates Phototropism with Nutrient and Redox Homeostasis during Fungal Development. PLoS Pathog 2015; 11:e1004972. [PMID: 26102503 PMCID: PMC4478003 DOI: 10.1371/journal.ppat.1004972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
Phototropic regulation of circadian clock is important for environmental adaptation, organismal growth and differentiation. Light plays a critical role in fungal development and virulence. However, it is unclear what governs the intracellular metabolic response to such dark-light rhythms in fungi. Here, we describe a novel circadian-regulated Twilight (TWL) function essential for phototropic induction of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. The TWL transcript oscillates during circadian cycles and peaks at subjective twilight. GFP-Twl remains acetylated and cytosolic in the dark, whereas light-induced phosphorylation (by the carbon sensor Snf1 kinase) drives it into the nucleus. The mRNA level of the transcription/repair factor TFB5, was significantly down regulated in the twl∆ mutant. Overexpression of TFB5 significantly suppressed the conidiation defects in the twl∆ mutant. Furthermore, Tfb5-GFP translocates to the nucleus during the phototropic response and under redox stress, while it failed to do so in the twl∆ mutant. Thus, we provide mechanistic insight into Twl-based regulation of nutrient and redox homeostasis in response to light during pathogen adaptation to the host milieu in the rice blast pathosystem.
Collapse
|
19
|
Zhu L, Bu Q, Xu X, Paik I, Huang X, Hoecker U, Deng XW, Huq E. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat Commun 2015; 6:7245. [PMID: 26037329 DOI: 10.1038/ncomms8245] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/22/2015] [Indexed: 02/01/2023] Open
Abstract
Plants undergo contrasting developmental programs in dark and light. Photomorphogenesis, a light-adapted programme is repressed in the dark by the synergistic actions of CUL4(COP1-SPA) E3 ubiquitin ligase and a subset of basic helix-loop-helix transcription factors called phytochrome interacting factors (PIFs). To promote photomorphogenesis, light activates the phytochrome family of sensory photoreceptors, which inhibits these repressors by poorly understood mechanisms. Here, we show that the CUL4(COP1-SPA) E3 ubiquitin ligase is necessary for the light-induced degradation of PIF1 in Arabidopsis. The light-induced ubiquitylation and subsequent degradation of PIF1 is reduced in the cop1, spaQ and cul4 backgrounds. COP1, SPA1 and CUL4 preferentially form complexes with the phosphorylated forms of PIF1 in response to light. The cop1 and spaQ seeds display strong hyposensitive response to far-red light-mediated seed germination and light-regulated gene expression. These data show a mechanism by which an E3 ligase attenuates its activity by degrading its cofactor in response to light.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingyun Bu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaosa Xu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xi Huang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
20
|
Wang X, Jing Y, Zhang B, Zhou Y, Lin R. Glycosyltransferase-like protein ABI8/ELD1/KOB1 promotes Arabidopsis hypocotyl elongation through regulating cellulose biosynthesis. PLANT, CELL & ENVIRONMENT 2015; 38:411-22. [PMID: 24995569 DOI: 10.1111/pce.12395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 05/22/2023]
Abstract
Seedling de-etiolation (photomorphogenesis) is an important light-regulated developmental process in plants. Here, we showed that disruption of the gene encoding a glycosyltransferase-like protein, ABA INSENSITIVE 8 (ABI8)/ELONGATION EFFECTIVE 1 (ELD1)/KOBITO1 (KOB1), caused short-hypocotyl elongation under all light conditions examined and even in darkness. We found that the ABI8 transcript level was down-regulated by light in a phytochrome A-dependent manner. Furthermore, light destabilized ABI8 protein via the 26S proteasome degradation pathway. We showed that ABI8 promoted the expression of genes involved in cell elongation and cellulose synthesis. Consistently, the cellulose content was reduced in the abi8 mutants and application of 2, 6-dichlorobenzonitrile (an inhibitor of cellulose biosynthesis) mimicked the abi8 mutant phenotype. Moreover, we found that phytochrome and cryptochrome photoreceptors negatively, whereas CONSTITUTIVE PHOTOMORPHOGENIC 1 positively, regulated cellulose synthesis. We also showed that ELONGATED HYPOCOTYL 5 directly bound to the promoters of ABI8 and several cellulose synthesis genes and repressed their expression in light conditions. Taken together, our study reveals that ABI8 functions as a negative factor in light inhibition of hypocotyl elongation through modulating cellulose biosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
21
|
Nieto C, López-Salmerón V, Davière JM, Prat S. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Curr Biol 2014; 25:187-193. [PMID: 25557667 DOI: 10.1016/j.cub.2014.10.070] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
The circadian clock plays a pivotal role in the control of Arabidopsis hypocotyl elongation by regulating rhythmic expression of the bHLH factors PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and 5). Coincidence of increased PIF4/PIF5 transcript levels with the dark period allows nuclear accumulation of these factors, and in short days it phases maximal hypocotyl growth at dawn. During early night, PIF4 and PIF5 transcription is repressed by the Evening Complex (EC) proteins EARLY FLOWERING3 (ELF3), EARLY FLOWERING4 (ELF4), and LUX ARRHYTHMO (LUX). While ELF3 has an essential role in EC complex assembly, several lines of evidence indicate that this protein controls plant growth via other mechanisms that are presently unknown. Here, we show that the ELF3 and PIF4 proteins interact in an EC-independent manner, and that this interaction prevents PIF4 from activating its transcriptional targets. We also show that PIF4 overexpression leads to ELF3 protein destabilization, and that this effect is mediated indirectly by negative feedback regulation of photoactive PHYTOCHROME B (phyB). Physical interaction of the phyB photoreceptor with ELF3 has been reported, but its functional relevance remains poorly understood. Our findings establish that phyB is needed for ELF3 accumulation in the light, most likely by competing for CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-mediated ubiquitination and the proteasomal degradation of ELF3. Our results explain the short hypocotyl phenotype of ELF3 overexpressors, despite their normal clock function, and provide a molecular framework for understanding how warm temperatures promote hypocotyl elongation and affect the endogenous clock.
Collapse
Affiliation(s)
- Cristina Nieto
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Vadir López-Salmerón
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Jean-Michel Davière
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Departamento Genética Molecular de Plantas, Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Cho SK, Ben Chaabane S, Shah P, Poulsen CP, Yang SW. COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 2014; 5:5867. [PMID: 25532508 DOI: 10.1038/ncomms6867] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Constitutive photomorphogenic 1 (COP1) is a RING-finger E3 ligase that plays a central role in photomorphogenesis by destabilizing many light-regulated transcription factors and photoreceptors. Here, we reveal a novel function for COP1 E3 ligase in controlling global miRNA biogenesis in Arabidopsis thaliana. In cop1 mutants, the level of miRNAs is dramatically reduced because of the diminution of HYPONASTIC LEAVES 1 (HYL1), an RNA-binding protein required for precise miRNA processing. HYL1 is destabilized by an unidentified protease, which we tentatively call protease X, that specifically cleaves the N-terminal region from HYL1, thus neutralizing its function. Our results further show that the cytoplasmic partitioning of COP1 under light is essential to protect HYL1 against protease X. Taken together, we suggest a novel regulatory network involving HYL1, protease X, COP1 and light signalling that is indispensable for miRNA biogenesis in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Seok Keun Cho
- Laboratory of Plant Biochemistry, Department of Plant and Environmental Sciences, Center for UNIK Synthetic Biology, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Samir Ben Chaabane
- Laboratory of Plant Biochemistry, Department of Plant and Environmental Sciences, Center for UNIK Synthetic Biology, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Pratik Shah
- Laboratory of Plant Biochemistry, Department of Plant and Environmental Sciences, Center for UNIK Synthetic Biology, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Christian Peter Poulsen
- Laboratory of Plant Biochemistry, Department of Plant and Environmental Sciences, Center for UNIK Synthetic Biology, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Seong Wook Yang
- Laboratory of Plant Biochemistry, Department of Plant and Environmental Sciences, Center for UNIK Synthetic Biology, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
23
|
Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnol Adv 2014; 33:53-63. [PMID: 25532679 DOI: 10.1016/j.biotechadv.2014.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
Abstract
Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties.
Collapse
|
24
|
Huang X, Ouyang X, Deng XW. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:96-103. [PMID: 25061897 DOI: 10.1016/j.pbi.2014.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 05/04/2023]
Abstract
Light is a pivotal environmental stimulus that promotes plant photomorphogenesis. Substantial progress has been achieved in defining the central repressors of photomorphogenesis, the CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) loci, in the past 20 years. COP/DET/FUS proteins are well-conserved, and regulate a variety of biological processes in plants and animals. The fact that these proteins contribute to the repression of plant photomorphogenesis by regulating the ubiquitin-proteasome-dependent pathway has been well established. Recently, molecular insight has been gained into the functional diversity of COP/DET/FUS. Here, we review the current research on the roles of COP/DET/FUS, with a focus on the functional conversion of COP1 in photomorphogenesis.
Collapse
Affiliation(s)
- Xi Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA.
| |
Collapse
|
25
|
Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday KJ. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 2014; 10:e1004416. [PMID: 24922306 PMCID: PMC4055456 DOI: 10.1371/journal.pgen.1004416] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 12/27/2022] Open
Abstract
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of PHYTOCHROME INTERACTING FACTORS (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor LONG HYPOCOTYL 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth. Plants, as sessile and photosynthetic organisms, have to constantly adjust their growth and development in response to the environment. While light and temperature are recognized as the most prominent environmental factors modulating plant photosynthetic metabolism, how the seasonal and daily adjustments are achieved is not understood. Global climate alterations will bring together the combination of light and temperature changes and will require an understanding of signal convergence. If we are to mitigate the impact of variable weather patterns on agriculture, it is critical to advance our understanding of the basis of plant responses to environmental variations. In our study we show that the antagonistic activity of key plant transcription factors involved in phytochrome red light photoreceptors signaling (PIFs and HY5) optimize photosynthetic pigment production in response to environmental cues. These light and temperature responsive transcription factors operate in cooperation with the circadian clock to regulate photosynthetic pigment production through a common gene promoter element.
Collapse
Affiliation(s)
- Gabriela Toledo-Ortiz
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (GTO); (KJH)
| | - Henrik Johansson
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Plant Physiology, Justus Liebig University, Senckernbergstr, Giessen, Germany
| | - Keun Pyo Lee
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Kelly Stewart
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Gavin Steel
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Karen J. Halliday
- Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (GTO); (KJH)
| |
Collapse
|
26
|
Xu X, Paik I, Zhu L, Bu Q, Huang X, Deng XW, Huq E. PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis. THE PLANT CELL 2014; 26:1992-2006. [PMID: 24858936 PMCID: PMC4079364 DOI: 10.1105/tpc.114.125591] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 05/20/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a RING/WD40 repeat-containing ubiquitin E3 ligase that is conserved from plants to humans. COP1 forms complexes with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins, and these complexes degrade positively acting transcription factors in the dark to repress photomorphogenesis. Phytochrome-interacting basic helix-loop-helix transcription factors (PIFs) also repress photomorphogenesis in the dark. In response to light, the phytochrome family of sensory photoreceptors simultaneously inactivates COP1-SPA complexes and induces the rapid degradation of PIFs to promote photomorphogenesis. However, the functional relationship between PIFs and COP1-SPA complexes is still unknown. Here, we present genetic evidence that the pif and cop1/spa Arabidopsis thaliana mutants synergistically promote photomorphogenesis in the dark. LONG HYPOCOTYL5 (HY5) is stabilized in the cop1 pif1, spa123 pif1, and pif double, triple, and quadruple mutants in the dark. Moreover, the hy5 mutant suppresses the constitutive photomorphogenic phenotypes of the pifq mutant in the dark. PIF1 forms complexes with COP1, HY5, and SPA1 and enhances the substrate recruitment and autoubiquitylation and transubiquitylation activities of COP1. These data uncover a novel function of PIFs as the potential cofactors of COP1 and provide a genetic and biochemical model of how PIFs and COP1-SPA complexes synergistically repress photomorphogenesis in the dark.
Collapse
Affiliation(s)
- Xiaosa Xu
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Inyup Paik
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Ling Zhu
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Qingyun Bu
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Xi Huang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Enamul Huq
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
27
|
Thines BC, Youn Y, Duarte MI, Harmon FG. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1141-51. [PMID: 24574484 PMCID: PMC3935576 DOI: 10.1093/jxb/ert487] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD.
Collapse
Affiliation(s)
- Bryan C. Thines
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
- * Present address: Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, W. M. Keck Science Center, 925 N. Mills Avenue, Claremont, CA 91711, USA
| | - Youngwon Youn
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Maritza I. Duarte
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
- Present address: Pioneer Hi-Bred International, Inc., A DuPont Company, Hayward, CA 94545, USA
| | - Frank G. Harmon
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Berenschot AS, Quecini V. A reverse genetics approach identifies novel mutants in light responses and anthocyanin metabolism in petunia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:1-13. [PMID: 24554834 PMCID: PMC3925473 DOI: 10.1007/s12298-013-0212-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/22/2013] [Accepted: 10/18/2013] [Indexed: 05/03/2023]
Abstract
Flower color and plant architecture are important commercially valuable features for ornamental petunias (Petunia x hybrida Vilm.). Photoperception and light signaling are the major environmental factors controlling anthocyanin and chlorophyll biosynthesis and shade-avoidance responses in higher plants. The genetic regulators of these processes were investigated in petunia by in silico analyses and the sequence information was used to devise a reverse genetics approach to probe mutant populations. Petunia orthologs of photoreceptor, light-signaling components and anthocyanin metabolism genes were identified and investigated for functional conservation by phylogenetic and protein motif analyses. The expression profiles of photoreceptor gene families and of transcription factors regulating anthocyanin biosynthesis were obtained by bioinformatic tools. Two mutant populations, generated by an alkalyting agent and by gamma irradiation, were screened using a phenotype-independent, sequence-based method by high-throughput PCR-based assay. The strategy allowed the identification of novel mutant alleles for anthocyanin biosynthesis (CHALCONE SYNTHASE) and regulation (PH4), and for light signaling (CONSTANS) genes.
Collapse
Affiliation(s)
- Amanda S. Berenschot
- />Centro de Pesquisa e Desenvolvimento de Recursos Genéticos, Instituto Agronômico, Caixa Postal 28, 13001-970 Campinas, SP Brazil
| | - Vera Quecini
- />Embrapa Uva e Vinho, Rua Livramento, 515, 95700-000 Bento Gonçalves, RS Brazil
| |
Collapse
|
29
|
Patra B, Pattanaik S, Yuan L. Proteolytic degradation of the flavonoid regulators, TRANSPARENT TESTA8 and TRANSPARENT TESTA GLABRA1, in Arabidopsis is mediated by the ubiquitin/26Sproteasome system. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25901. [PMID: 23921543 PMCID: PMC4091075 DOI: 10.4161/psb.25901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Regulated proteolysis by the ubiquitin/26S proteasome system (UPS) has emerged as a major posttranslational control mechanism regulating transcription factor (TF) activity in plants. Anthocyanin biosynthesis in Arabidopsis is regulated by a ternary complex comprised of basic helix-loop-helix (bHLH), R2R3MYB and WD-repeat (WDR) proteins. The bHLH TF, TRAN SPAR ENT TESTA 8 (TT 8), and the WDR protein, TRAN SPAR ENT TESTA GLABRA 1 (TT G1), are essential for expression of late flavonoid biosynthesis genes. Previous studies have demonstrated that the turnover of several anthocyanin pathway regulators is controlled by the UPS. Here, we show that TT 8 and TT G1 are short-lived and targeted by the UPS for degradation. Our findings further extend our understanding of the role of the UPS in the regulation of anthocyanin biosynthesis in plants.
Collapse
Affiliation(s)
- Barunava Patra
- Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
- Department of Plant and Soil Sciences; University of Kentucky; Lexington, KY USA
- Correspondence to: Sitakanta Pattanaik, and Ling Yuan,
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center; University of Kentucky; Lexington, KY USA
- Department of Plant and Soil Sciences; University of Kentucky; Lexington, KY USA
- Correspondence to: Sitakanta Pattanaik, and Ling Yuan,
| |
Collapse
|
30
|
The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions. PLoS One 2013; 8:e68652. [PMID: 23874706 PMCID: PMC3714250 DOI: 10.1371/journal.pone.0068652] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba) has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. METHODOLOGY/PRINCIPAL FINDINGS The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour) rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. CONCLUSIONS Our work represents the first characterization of the krill diurnal transcriptome under natural conditions and provides a first insight into the genetic regulation of physiological changes, which occur around the clock during an Antarctic summer day.
Collapse
|
31
|
Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. THE PLANT CELL 2013; 25:1657-73. [PMID: 23645630 PMCID: PMC3694698 DOI: 10.1105/tpc.112.104869] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/06/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments.
Collapse
Affiliation(s)
- Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Ji
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
32
|
Doğramacı M, Foley ME, Chao WS, Christoffers MJ, Anderson JV. Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. PLANT MOLECULAR BIOLOGY 2013; 81:577-93. [PMID: 23436173 DOI: 10.1007/s11103-013-0026-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/01/2013] [Indexed: 05/08/2023]
Abstract
Leafy spurge is a model for studying well-defined phases of dormancy in underground adventitious buds (UABs) of herbaceous perennial weeds, which is a primary factor facilitating their escape from conventional control measures. A 12-week ramp down in both temperature (27 → 10 °C) and photoperiod (16 → 8 h light) is required to induce a transition from para- to endo-dormancy in UABs of leafy spurge. To evaluate the effects of photoperiod and temperature on molecular networks of UABs during this transition, we compared global transcriptome data-sets obtained from leafy spurge exposed to a ramp down in both temperature and photoperiod (RDtp) versus a ramp down in temperature (RDt) alone. Analysis of data-sets indicated that transcript abundance for genes associated with circadian clock, photoperiodism, flowering, and hormone responses (CCA1, COP1, HY5, MAF3, MAX2) preferentially increased in endodormant UABs. Gene-set enrichment analyses also highlighted metabolic pathways involved in endodormancy induction that were associated with ethylene, auxin, flavonoids, and carbohydrate metabolism; whereas, sub-network enrichment analyses identified hubs (CCA1, CO, FRI, miR172A, EINs, DREBs) of molecular networks associated with carbohydrate metabolism, circadian clock, flowering, and stress and hormone responses. These results helped refine existing models for the transition to endodormancy in UABs of leafy spurge, which strengthened the roles of circadian clock associated genes, DREBs, COP1-HY5, carbohydrate metabolism, and involvement of hormones (ABA, ethylene, and strigolactones). We further examined the effects of ethylene by application of 1-aminocyclopropane-1-carboxylate (ACC) to paradormant plants without a ramp down treatment. New vegetative growth from UABs of ACC-treated plants resulted in a dwarfed phenotype that mimicked the growth response in RDtp-induced endodormant UABs. The results of this study provide new insights into dormancy regulation suggesting a short-photoperiod treatment provides an additive cross-talk effect with temperature signals that may impact ethylene's effect on AP2/ERF family members.
Collapse
Affiliation(s)
- Münevver Doğramacı
- Biosciences Research Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA
| | | | | | | | | |
Collapse
|
33
|
Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. THE PLANT CELL 2013; 25:1258-73. [PMID: 23548744 PMCID: PMC3663266 DOI: 10.1105/tpc.113.109710] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II-associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings.
Collapse
Affiliation(s)
- Xuncheng Liu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ko-Ching Wang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ming Luo
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ready Tai
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Lianyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minglei Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gang Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Address correspondence to
| |
Collapse
|
34
|
Jing Y, Zhang D, Wang X, Tang W, Wang W, Huai J, Xu G, Chen D, Li Y, Lin R. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. THE PLANT CELL 2013; 25:242-56. [PMID: 23314848 PMCID: PMC3584539 DOI: 10.1105/tpc.112.105742] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/13/2012] [Accepted: 12/27/2012] [Indexed: 05/18/2023]
Abstract
Photomorphogenesis is a critical plant developmental process that involves light-mediated transcriptome changes, histone modifications, and inhibition of hypocotyl growth. However, the chromatin-based regulatory mechanism underlying this process remains largely unknown. Here, we identify ENHANCED PHOTOMORPHOGENIC1 (EPP1), previously known as PICKLE (PKL), an ATP-dependent chromatin remodeling factor of the chromodomain/helicase/DNA binding family, as a repressor of photomorphogenesis in Arabidopsis thaliana. We show that PKL/EPP1 expression is repressed by light in the hypocotyls in a photoreceptor-dependent manner. Furthermore, we reveal that the transcription factor ELONGATED HYPOCOTYL5 (HY5) binds to the promoters of cell elongation-related genes and recruits PKL/EPP1 through their physical interaction. PKL/EPP1 in turn negatively regulates HY5 by repressing trimethylation of histone H3 Lys 27 at the target loci, thereby regulating the expression of these genes and, thus, hypocotyl elongation. We also show that HY5 possesses transcriptional repression activity. Our study reveals a crucial role for a chromatin remodeling factor in repressing photomorphogenesis and demonstrates that transcription factor-mediated recruitment of chromatin-remodeling machinery is important for plant development in response to changing light environments.
Collapse
Affiliation(s)
- Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dong Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqing Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunliang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
35
|
Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 2012; 139:3402-12. [PMID: 22912415 DOI: 10.1242/dev.078212] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.
Collapse
Affiliation(s)
- Massimiliano Sassi
- CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Laboratoire de Reproduction et Développement des Plantes, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee JH, Kim JJ, Kim SH, Cho HJ, Kim J, Ahn JH. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1802-14. [PMID: 22960247 DOI: 10.1093/pcp/pcs123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Jang IC, Niu QW, Deng S, Zhao P, Chua NH. Enhancing protein stability with retained biological function in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:345-54. [PMID: 22631228 DOI: 10.1111/j.1365-313x.2012.05060.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The final expression level of a transgene-derived protein in transgenic plants depends on transcriptional and post-transcriptional processes. Here, we focus on methods to improve protein stability without comprising biological function. We found that the four isoforms of the Arabidopsis RAD23 protein family are relatively stable. The UBA2 domain derived from RAD23a can be used as a portable stabilizing signal to prolong the half-life of two unstable transcription factors (TFs), HFR1 and PIF3. The increased stability of the TF-UBA2 fusion proteins results in an enhanced phenotype in transgenic plants compared to expression of the TF alone. Similar results were obtained for the RAD23a UBA1 domain. In addition to UBA1/2 of RAD23a, the UBA domain from the Arabidopsis DDI1 protein also increased the half-life of the unstable protein JAZ10.1, which is involved in jasmonate signaling. Taken together, our results suggest that UBA fusions can be used to increase the stability of unstable proteins for basic plant biology research as well as crop improvement.
Collapse
Affiliation(s)
- In-Cheol Jang
- Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
38
|
Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. PLANT PHYSIOLOGY 2012; 160:1011-22. [PMID: 22855936 PMCID: PMC3461526 DOI: 10.1104/pp.112.199703] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species.
Collapse
Affiliation(s)
| | | | - Cheng Zhao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xian-Yan Zhao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Hua-Lei Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Huai-Rui Shu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
39
|
Lee KH, Marshall RS, Slivicke LM, Vierstra RD. Genetic analyses of the Arabidopsis 26S proteasome regulatory particle reveal its importance during light stress and a specific role for the N-terminus of RPT2 in development. PLANT SIGNALING & BEHAVIOR 2012; 7:973-978. [PMID: 22836496 PMCID: PMC3474698 DOI: 10.4161/psb.20934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The 26S proteasome subunit RPT2 is a component of the hexameric ring of AAA-ATPases that forms the base of the 19S regulatory particle (RP). This subunit has specific roles in the yeast and mammalian proteasomes by helping promote assembly of the RP with the 20S core protease (CP) and gate the CP to prevent indiscriminate degradation of cytosolic and nuclear proteins. In plants, this subunit plays an important role in diverse processes that include shoot and root apical meristem maintenance, cell size regulation, trichome branching, and stress responses. Recently, we reported that mutants in RPT2 and several other RP subunits have reduced histone levels, suggesting that at least some of the pleiotropic phenotypes observed in these plants result from aberrant nucleosome assembly. Here, we expand our genetic analysis of RPT2 in Arabidopsis to shed additional light on the roles of the N- and C-terminal ends. We also present data showing that plants bearing mutations in RP subunit genes have their seedling phenotypes exacerbated by prolonged light exposure.
Collapse
|
40
|
Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill JG, Lu H, Zhao Q, Ding B, Xie Q, Zhou JM, Dai L, Wang GL. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:239-50. [PMID: 22383540 PMCID: PMC3366716 DOI: 10.1104/pp.111.192617] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2012] [Indexed: 05/18/2023]
Abstract
The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.
Collapse
|
41
|
Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 2012; 8:566. [PMID: 22252389 PMCID: PMC3296358 DOI: 10.1038/msb.2011.97] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022] Open
Abstract
Environmental light regulates and optimizes plant growth and development. Genomic profiling of polysome-associated mRNA reveals that light stimulates dramatic changes in translational regulation, which contribute more to light-induced gene expression changes than transcriptional regulation. ![]()
Translational control has a stronger impact on gene expression regulation than transcriptomic changes during photomorphogenesis in Arabidopsis. Transcriptional and translational regulations have complementary and distinct impacts on biochemical pathways and biological processes. Light-mediated translational control prefers stable and shorter mRNAs. mRNAs with TAGGGTTT in their 5′ untranslated region have higher translatability.
Environmental ‘light' has a vital role in regulating plant growth and development. Transcriptomic profiling has been widely used to examine how light regulates mRNA levels on a genome-wide scale, but the global role of translational regulation in the response to light is unknown. Through a transcriptomic comparison of steady-state and polysome-bound mRNAs, we reveal a clear impact of translational control on thousands of genes, in addition to transcriptomic changes, during photomorphogenesis. Genes encoding ribosomal protein are preferentially regulated at the translational level, which possibly contributes to the enhanced translation efficiency. We also reveal that mRNAs regulated at the translational level share characteristics of longer half-lives and shorter cDNA length, and that transcripts with a cis-element, TAGGGTTT, in their 5′ untranslated region have higher translatability. We report a previously neglected aspect of gene expression regulation during Arabidopsis photomorphogenesis. The identities and molecular signatures associated with mRNAs regulated at the translational level also offer new directions for mechanistic studies of light-triggered translational enhancement in Arabidopsis.
Collapse
|
42
|
Van Buskirk EK, Decker PV, Chen M. Photobodies in light signaling. PLANT PHYSIOLOGY 2012; 158:52-60. [PMID: 21951469 PMCID: PMC3252093 DOI: 10.1104/pp.111.186411] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/22/2011] [Indexed: 05/17/2023]
|
43
|
|
44
|
Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. Protein degradation - an alternative respiratory substrate for stressed plants. TRENDS IN PLANT SCIENCE 2011; 16:489-98. [PMID: 21684795 DOI: 10.1016/j.tplants.2011.05.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 05/18/2023]
Abstract
In cellular circumstances under which carbohydrates are scarce, plants can metabolize proteins and lipids as alternative respiratory substrates. Respiration of protein is less efficient than that of carbohydrate as assessed by the respiratory quotient; however, under certain adverse conditions, it represents an important alternative energy source for the cell. Significant effort has been invested in understanding the regulation of protein degradation in plants. This has included an investigation of how proteins are targeted to the proteosome, and the processes of senescence and autophagy. Here we review these events with particular reference to amino acid catabolism and its role in supporting the tricarboxylic acid cycle and direct electron supply to the ubiquinone pool of the mitochondrial electron transport chain in plants.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
45
|
Bu Q, Zhu L, Huq E. Multiple kinases promote light-induced degradation of PIF1. PLANT SIGNALING & BEHAVIOR 2011; 6:1119-1121. [PMID: 21758014 PMCID: PMC3260707 DOI: 10.4161/psb.6.8.16049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 05/28/2023]
Abstract
Phytochrome (phy) family of photoreceptors is a broad sensor of environmental light signals that promote photomorphogenic development of plants. Phytochrome Interacting Factors (PIFs), bHLH family of transcription factors, repress photomorphogenesis in the dark in an overlapping manner. Phytochromes interact with PIFs in response to light and induce rapid phosphorylation, poly-ubiquitylation and degradation of PIFs through the ubiquitin/26S proteasome pathway to promote photomorphogenesis. Structure-function analyses with PIF family members revealed that multiple domains are necessary for the light-induced phosphorylation and degradation of PIFs. CK2, a ubiquitious Ser/Thr kinase, phosphorylates PIF1 independent of light. In addition, PIF1 mutants deficient in CK2 phosphorylation sites are still robustly phosphorylated but not efficiently degraded in response to light. These data suggest that multiple kinases phosphorylate PIF1 to promote light-induced degradation and photomorphogenesis.
Collapse
Affiliation(s)
- Qingyun Bu
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX, USA
| | | | | |
Collapse
|
46
|
Wang F, Deng XW. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res 2011; 21:1286-94. [PMID: 21788985 DOI: 10.1038/cr.2011.118] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.
Collapse
Affiliation(s)
- Feng Wang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
47
|
Doğramacı M, Horvath DP, Christoffers MJ, Anderson JV. Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds. Funct Integr Genomics 2011; 11:611-26. [PMID: 21789635 DOI: 10.1007/s10142-011-0239-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/29/2011] [Accepted: 07/03/2011] [Indexed: 11/30/2022]
Abstract
Leafy spurge (Euphorbia esula L.) is a herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo-, and ecodormancy). In this study, the effects of dehydration stress on vegetative growth and flowering potential from endodormant UABs of leafy spurge was monitored. Further, microarray analysis was used to identify critical signaling pathways of transcriptome profiles associated with endodormancy maintenance in UABs. Surprisingly, only 3-day of dehydration stress is required to break the endodormant phase in UABs; however, the dehydration-stress treatment did not induce flowering. Previous studies have shown that prolonged cold treatment of UABs breaks endodormancy and induces a vernalization response leading to flowering. Thus, in this study, comparing transcriptome data from UABs exposed to short-term dehydration and vernalization provided a unique approach to identify overlapping molecular mechanisms involved in endodormancy maintenance and floral competence. Analysis of transcriptome data associated with breaking endodormancy by both environmental treatments identified LEC1, PHOTOSYSTEM I RC, and brassinosteroids as common central hubs of upregulated genes, while DREB1A, CBF2, GPA1, MYC2, bHLH, BZIP, and flavonoids were identified as common central hubs of downregulated genes. The majority of over-represented gene sets common to breaking endodormancy by dehydration stress and vernalization were downregulated and included pathways involved in hormone signaling, chromatin modification, and circadian rhythm. Additionally, the over-represented gene sets highlighted pathways involved in starch and sugar degradation and biogenesis of carbon skeletons, suggesting a high metabolic activity is necessary during the endodormant phase. The data presented in this study helped to refine our previous model for dormancy regulation.
Collapse
Affiliation(s)
- Münevver Doğramacı
- Biosciences Research Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd. N., Fargo, ND 58102-2765, USA
| | | | | | | |
Collapse
|
48
|
Fankhauser C, Ulm R. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev 2011; 25:1004-9. [PMID: 21576261 PMCID: PMC3093115 DOI: 10.1101/gad.2053911] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023-1028) and Liu and colleagues (pp. 1029-1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regulatory components of E3 ubiquitin ligase complexes leads to environmentally controlled abundance of transcriptional regulators.
Collapse
Affiliation(s)
- Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
49
|
Chang CSJ, Maloof JN, Wu SH. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:228-39. [PMID: 21427283 PMCID: PMC3091042 DOI: 10.1104/pp.111.175042] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 05/19/2023]
Abstract
Light regulates multiple aspects of growth and development in plants. Transcriptomic changes govern the expression of signaling molecules with the perception of light. Also, the 26S proteasome regulates the accumulation of positive and negative regulators for optimal growth of Arabidopsis (Arabidopsis thaliana) in the dark, light, or light/dark cycles. BBX22, whose induction is both light regulated and HY5 dependent, is a positive regulator of deetiolation in Arabidopsis. We found that during skotomorphogenesis, the expression of BBX22 needs to be tightly regulated at both transcriptional and posttranslational levels. During photomorphogenesis, the expression of BBX22 transiently accumulates to execute its roles as a positive regulator. BBX22 protein accumulates to a higher level under short-day conditions and functions to inhibit hypocotyl elongation. The proteasome-dependent degradation of BBX22 protein is tightly controlled even in plants overexpressing BBX22. An analysis of BBX22 degradation kinetics shows that the protein has a short half-life under both dark and light conditions. COP1 mediates the degradation of BBX22 in the dark. Although dispensable in the dark, HY5 contributes to the degradation of BBX22 in the light. The constitutive photomorphogenic development of the cop1 mutant is enhanced in cop1BBX22ox plants, which show a short hypocotyl, high anthocyanin accumulation, and expression of light-responsive genes. Exaggerated light responsiveness is also observed in cop1BBX22ox seedlings grown under short-day conditions. Therefore, the proper accumulation of BBX22 is crucial for plants to maintain optimal growth when grown in the dark as well as to respond to seasonal changes in daylength.
Collapse
|
50
|
Nozue K, Harmer SL, Maloof JN. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:357-72. [PMID: 21430186 PMCID: PMC3091056 DOI: 10.1104/pp.111.172684] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/21/2011] [Indexed: 05/19/2023]
Abstract
Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway.
Collapse
|