1
|
Sato N, Khoa HV, Mikami K. Heat stress memory differentially regulates the expression of nitrogen transporter genes in the filamentous red alga ' Bangia' sp. ESS1. FRONTIERS IN PLANT SCIENCE 2024; 15:1331496. [PMID: 38375079 PMCID: PMC10875135 DOI: 10.3389/fpls.2024.1331496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Introduction To withstand high temperatures that would be lethal to a plant in the naïve state, land plants must establish heat stress memory. The acquisition of heat stress tolerance via heat stress memory in algae has only been observed in the red alga 'Bangia' sp. ESS1. Methods In this study, we further evaluated the intrinsic ability of this alga to establish heat stress memory by monitoring hydrogen peroxide (H2O2) production and examining the relationship between heat stress memory and the expression of genes encoding nitrogen transporters, since heat stress generally reduces nitrogen absorption. Next, genes encoding nitrogen transporters were selected from our unpublished transcriptome data of 'Bangia' sp. ESS1. Results We observed a reduction in H2O2 content when heat stress memory was established in the alga. In addition, six ammonium transporter genes, a single-copy nitrate transporter gene and two urea transporter genes were identified. Two of these nitrogen transporter genes were induced by heat stress but not by heat stress memory, two genes showed heat stress memory-dependent expression, and one gene was induced by both treatments. Heat stress memory therefore differentially regulated the expression of the nitrogen transporter genes by reducing heat stress-inducible gene expression and inducing heat stress memory-dependent gene expression. Discussion These findings point to the functional diversity of nitrogen transporter genes, which play different roles under various heat stress conditions. The characteristic effects of heat stress memory on the expression of individual nitrogen transporter genes might represent an indispensable strategy for reducing the threshold of sensitivity to recurrent high-temperature conditions and for maintaining nitrogen absorption under such conditions in 'Bangia' sp. ESS1.
Collapse
Affiliation(s)
- Natsumi Sato
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Ho Viet Khoa
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| |
Collapse
|
2
|
Zhang Q, Ying Y, Ping J. Recent Advances in Plant Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103414. [PMID: 34761568 PMCID: PMC8805591 DOI: 10.1002/advs.202103414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Indexed: 05/15/2023]
Abstract
Plants have complex internal signaling pathways to quickly adjust to environmental changes and harvest energy from the environment. Facing the growing population, there is an urgent need for plant transformation and precise monitoring of plant growth to improve crop yields. Nanotechnology, an interdisciplinary research field, has recently been boosting plant yields and meeting global energy needs. In this context, a new field, "plant nanoscience," which describes the interaction between plants and nanotechnology, emerges as the times require. Nanosensors, nanofertilizers, nanopesticides, and nano-plant genetic engineering are of great help in increasing crop yields. Nanogenerators are helping to develop the potential of plants in the field of energy harvesting. Furthermore, the uptake and internalization of nanomaterials in plants and the possible effects are also worthy of attention. In this review, a forward-looking perspective on the plant nanoscience is presented and feasible solutions for future food shortages and energy crises are provided.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SSC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JAN, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodríguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 2021; 10:e66877. [PMID: 34491200 PMCID: PMC8423441 DOI: 10.7554/elife.66877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Alexander T Borowsky
- Department of Botany and Plant Sciences, University of California, RiversideRiversideUnited States
| | - Benjamin J Cole
- Joint Genome Institute, Lawrence Berkeley National LaboratoryWalnut CreekUnited States
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Andrew Farmer
- National Center for Genome ResourcesSanta FeUnited States
| | | | - Purva Karia
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincolnUnited States
| | - Nicholas J Provart
- Department of Cell and Systems Biology and the Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Selena L Rice
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Maite Saura-Sanchez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos AiresBuenos AiresArgentina
| | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Amir H Ahkami
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Steven P Briggs
- Department of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | | | | | - Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico IINapoliItaly
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceTübingenGermany
| | | | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universitaet zu BerlinBerlinGermany
| | - Dae Kwan Ko
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Sagar Kumar
- Department of Plant Breeding & Genetics, Mata Gujri College, Fatehgarh Sahib, Punjabi UniversityPatialaIndia
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-LincolnMadisonUnited States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-MadisonMadisonUnited States
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazakiJapan
| | - Elsa H Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de MéxicoLeónMexico
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhianaIndia
| | - R Glen Uhrig
- Department of Science, University of AlbertaEdmontonCanada
| | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Klaas Van Wijk
- School of Integrated Plant Science, Plant Biology Section, Cornell UniversityIthacaUnited States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia TechBlacksburgUnited States
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| |
Collapse
|
4
|
Geisler M. Seeing is better than believing: visualization of membrane transport in plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:104-112. [PMID: 30253307 DOI: 10.1016/j.pbi.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 05/27/2023]
Abstract
Recently, the plant transport field has shifted their research focus toward a more integrative investigation of transport networks thought to provide the basis for long-range transport routes. Substantial progress was provided by of a series of elegant techniques that allow for a visualization or prediction of substrate movements in plant tissues in contrast to established quantitative methods offering low spatial resolution. These methods are critically evaluated in respect to their spatio-temporal resolution, invasiveness, dynamics and overall quality. Current limitations of transport route predictions-based on transporter locations and transport modeling are addressed. Finally, the potential of new tools that have not yet been fully implemented into plant research is indicated.
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology, Chemin du Musée 10, CH-1700 Fribourg, Switzerland.
| |
Collapse
|