1
|
Sun Q, Liu Y, Ni M, Song Y, Yang Q, Zhang J, Zhang Y, Tong Z. The Mining for Flowering-Related Genes Based on De Novo Transcriptome Sequencing in the Endangered Plant Phoebe chekiangensis. Int J Mol Sci 2025; 26:1000. [PMID: 39940774 PMCID: PMC11817208 DOI: 10.3390/ijms26031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Phoebe chekiangensis is an indigenous, endangered, and valuable timber and garden tree species in China, which is notable for having a short juvenile phase (early flowering), unique among the Phoebe genus. However, the molecular mechanisms regulating the flowering of P. chekiangensis remain unexplored, primarily due to the lack of transcriptomic or genomic data. In the present study, transcriptome sequencing yielded 53 million RNA reads, resulting in 111,250 unigenes after de novo assembly. Of these, 47,525 unigenes (42.72%) were successfully annotated in the non-redundant (Nr) database. Furthermore, 15,605 unigenes were assigned to Clusters of Orthologous Groups (KOGs), and 36,370 unigenes were classified into Gene Ontology (GO) categories. A total of 16,135 unigenes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, involving 298 pathways. Based on the expression levels, Gibberellin signaling pathway-related genes were the most predominant expression levels. Hormonal analysis showed that gibberellin (GA) levels varied across tissues and flowering stages, as GA20 levels in leaves were low during full bloom, while GA1 and GA5 levels peaked in flowers. Furthermore, several key genes involved in gibberellin biosynthesis, including CPS, GID1, GA20ox, GA3ox, and GA2ox, exhibited stage-specific expression patterns. Certain genes were highly expressed during the initial phases of flowering, while others, like GA3ox and GA2ox, reached peak expression at full bloom. These findings provide valuable insights into the molecular mechanisms underlying flowering in P. chekiangensis, laying the foundation for future breeding efforts. This transcriptome dataset will serve as an important public resource for molecular research on this species, facilitating the discovery of functional genes related to its growth, development, and flowering regulation.
Collapse
Affiliation(s)
- Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yan Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Mingyang Ni
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yandong Song
- Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China;
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| |
Collapse
|
2
|
Zhao Y, Liu Z, She H, Xu Z, Zhang H, Zheng S, Qian W. Comparative Transcriptome Analysis of Gene Expression Between Female and Monoecious Spinacia oleracea L. Genes (Basel) 2024; 16:24. [PMID: 39858571 PMCID: PMC11764767 DOI: 10.3390/genes16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Spinach (Spinacia oleracea L.) is an important leafy vegetable with dioecious and occasional monoecious plants. Monoecious lines are more suitable for hybrid production than dioecious lines due to their extended flowering period. However, genetic research on the sex determination of monoecism remains limited. METHODS In this study, RNA-seq analysis of monoecious and female spinach plants was performed at two distinct flowering stages. In total, we identified 4586 differentially expressed genes (DEGs), which were primarily involved in biological processes such as hormone signaling, cell wall biosynthesis, photosynthesis, and flower development, based on Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS Among these DEGs, 354 transcription factors, including 27 genes associated with the ABCDE gene, were discovered. Furthermore, a co-expression gene regulatory network was built, identifying nine key genes that play important roles in regulating sex differentiation between female and monoecious plants. CONCLUSIONS Our findings provide crucial molecular insights into the mechanisms of monoecism in spinach and offer a scientific basis for future spinach breeding.
Collapse
Affiliation(s)
- Yingjie Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.L.); (H.S.); (Z.X.); (H.Z.)
| |
Collapse
|
3
|
Barros-Rodríguez A, Pacheco P, Peñas-Corte M, Fernández-González AJ, Cobo-Díaz JF, Enrique-Cruz Y, Manzanera M. Comparative Study of Bacillus-Based Plant Biofertilizers: A Proposed Index. BIOLOGY 2024; 13:668. [PMID: 39336095 PMCID: PMC11428984 DOI: 10.3390/biology13090668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
The market for bacteria as agricultural biofertilizers is growing rapidly, offering plant-growth stimulants; biofungicides; and, more recently, protectors against extreme environmental factors, such as drought. This abundance makes it challenging for the end user to decide on the product to use. In this work, we describe the isolation of a strain of Bacillus velezensis (belonging to the operational group Bacillus amyloliquefaciens) for use as a plant-growth-promoting rhizobacterium, a biofungicide, and a protector against drought. To compare its effectiveness with other commercial strains of the same operational group, Bacillus amyloliquefaciens, we analyzed its ability to promote the growth of pepper plants and protect them against drought, as well as its fungicidal activity through antibiosis and antagonism tests, its ability to solubilize potassium and phosphates, and its ability to produce siderophores. Finally, we used a probit function, a type of regression analysis used to model the outcomes of analyses, to quantify the biostimulatory effectiveness of the different plant-growth-promoting rhizobacteria, developing what we have called the Agricultural Protection Against Stress Index, which allowed us to numerically compare the four commercial strains of the operational group Bacillus amyloliquefaciens, based on a Delphi method-a type of regression analysis that can be used to model a cumulative normal distribution-and integrate the results from our panel of tests into a single value.
Collapse
Affiliation(s)
- Adoración Barros-Rodríguez
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
- VitaNtech Biotechnology S.L, Av. de la Innovación, 1, 18016 Granada, Spain
| | - Pamela Pacheco
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - María Peñas-Corte
- Biopharma Research S.A (ECONATUR Group), P. Industrial Autovía Norte, C/ Montecillo S/N, 14100 La Carlota, Spain
| | - Antonio J Fernández-González
- Estación Experimental del Zaidín, Department of Soil and Plant Microbiology, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain
| | | | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
5
|
Wei H, Chen J, Lu Z, Zhang X, Liu G, Lian B, Chen Y, Zhong F, Yu C, Zhang J. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108738. [PMID: 38761544 DOI: 10.1016/j.plaphy.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
6
|
Balcerowicz M. Detecting the ebb and flow of a phytohormone: a ratiometric biosensor to analyse gibberellin dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:925-926. [PMID: 38743849 DOI: 10.1111/tpj.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
|
7
|
Shani E, Hedden P, Sun TP. Highlights in gibberellin research: A tale of the dwarf and the slender. PLANT PHYSIOLOGY 2024; 195:111-134. [PMID: 38290048 PMCID: PMC11060689 DOI: 10.1093/plphys/kiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024]
Abstract
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Collapse
Affiliation(s)
- Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacky University, 78371 Olomouc, Czech Republic
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tai-ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
9
|
Hu K, Dai Q, Ajayo BS, Wang H, Hu Y, Li Y, Huang H, Liu H, Liu Y, Wang Y, Gao L, Xie Y. Insights into ZmWAKL in maize kernel development: genome-wide investigation and GA-mediated transcription. BMC Genomics 2023; 24:760. [PMID: 38082218 PMCID: PMC10712088 DOI: 10.1186/s12864-023-09849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Sinograin Chengdu Storage Research Institute Co.Ltd, Chengdu, 610091, China
| | - Qiao Dai
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Babatope Samuel Ajayo
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yayun Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Jia P, Sharif R, Li Y, Sun T, Li S, Zhang X, Dong Q, Luan H, Guo S, Ren X, Qi G. The BELL1-like homeobox gene MdBLH14 from apple controls flowering and plant height via repression of MdGA20ox3. Int J Biol Macromol 2023; 242:124790. [PMID: 37169049 DOI: 10.1016/j.ijbiomac.2023.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Apple growth and yield are largely dependent on plant height and flowering characteristics. The BELL1-like homeobox (BLH) transcription factors regulate extensive plant biological processes. However, the BLH-mediated regulation of plant height and flowering in apple remains elusive. In the current study, 19 members of the MdBLH family were identified in the apple genome. Segmental duplication and purifying selection are the main reasons for the evolution of the MdBLH genes. A BLH1-like gene, MdBLH14, was isolated and functionally characterized. The MdBLH14 was preferentially expressed in flower buds, and downregulated during the floral induction period. The subcellular localization in tobacco leaves indicated that MdBLH14 is a nuclear protein. Overexpression of MdBLH14 in Arabidopsis led to a significant dwarfing and late-flowering phenotype by hindering active GA accumulation. Additionally, MdKNOX19, another member of the TALE superfamily, physically interacts with MdBLH14 and synergistically inhibits the expression of MdGA20ox3. This is the first report on the function of the MdBLH14 from apple, and its mechanism involving plant flower induction and growth. The data presented here provide a theoretical basis for genetically breeding new apple varieties.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China; College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tianbo Sun
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Shikui Li
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
11
|
Chandwani S, Kayasth R, Naik H, Amaresan N. Current status and future prospect of managing lead (Pb) stress through microbes for sustainable agriculture. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:479. [PMID: 36930330 DOI: 10.1007/s10661-023-11061-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Soil is an important residence under various biotic and abiotic conditions. Contamination of soil by various means has hazardous effects on both plants and humans. Soil contamination by heavy metals occurs due to various man-made activities, including improper industrial and agricultural practices. Among the heavy metals, after arsenic, lead (Pb) was found to be the second most toxic metal and potent pollutants that accumulate in sediments and soils. Pb is not considered an essential element for promoting plant growth but is readily absorbed and accumulated in different plant parts. Many parameters such as pH, root exudation, soil particle size, cation exchange capacity, and other physicochemical parameters are involved in Pb uptake in plants. Excess amounts of Pb pose a threat to plant growth and cause toxicity such as chlorosis, blackening of the root system, and stunted growth. Pb toxicity may inhibit photosynthesis, disturb water balance and mineral nutrition, and alter the hormonal status, structure, and membrane permeability of plants. Therefore, this review addresses the effects of Pb toxicity and its impact on plant growth, including the morphological, physiological, and biological effects of Pb toxicity, the mechanisms behind different strategies promoting plant growth, and in combating Pb-induced stress. The bioremediation strategy for Pb removal from Pb-contaminated soil also plays an important role in combating Pb toxicity using bacterial community. Pb-contaminated soil may be remediated using different technologies such as rhizofiltration and phytoremediation, which tend to have a great capacity to curb Pb-contamination within the soil.
Collapse
Affiliation(s)
- Sapna Chandwani
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Rinkal Kayasth
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Hetvi Naik
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India
| | - Natarajan Amaresan
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli Surat, 394 350, Gujarat, India.
| |
Collapse
|
12
|
Zhang D, Chen Q, Zhang X, Lin L, Cai M, Cai W, Liu Y, Xiang L, Sun M, Yu X, Li Y. Effects of low temperature on flowering and the expression of related genes in Loropetalum chinense var. rubrum. FRONTIERS IN PLANT SCIENCE 2022; 13:1000160. [PMID: 36457526 PMCID: PMC9705732 DOI: 10.3389/fpls.2022.1000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Loropetalum chinense var. rubrum blooms 2-3 times a year, among which the autumn flowering period has great potential for exploitation, but the number of flowers in the autumn flowering period is much smaller than that in the spring flowering period. METHODS Using 'Hei Zhenzhu' and 'Xiangnong Xiangyun' as experimental materials, the winter growth environment of L. chinense var. rubrum in Changsha, Hunan Province was simulated by setting a low temperature of 6-10°C in an artificial climate chamber to investigate the effect of winter low temperature on the flowering traits and related gene expression of L. chinense var. rubrum. RESULTS The results showed that after 45 days of low temperature culture and a subsequent period of 25°C greenhouse culture, flower buds and flowers started to appear on days 24 and 33 of 25°C greenhouse culture for 'Hei Zhenzhu', and flower buds and flowers started to appear on days 21 and 33 of 25°C greenhouse culture for 'Xiangnong Xiangyun'. The absolute growth rate of buds showed a 'Up-Down' pattern during the 7-28 days of low temperature culture; the chlorophyll fluorescence decay rate (Rfd) of both materials showed a 'Down-Up-Down' pattern during this period. The non-photochemical quenching coefficient (NPQ) showed the same trend as Rfd, and the photochemical quenching coefficient (QP) fluctuated above and below 0.05. The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually increased after the beginning of low temperature culture, reaching the highest expression on day 14 and day 28, respectively, and the expression of both in the experimental group was higher than that in the control group. The expressions of FLC, SVP and TFL1 similar genes all decreased gradually with low temperature culture, among which the expressions of FLC similar genes and TFL1 similar genes in the experimental group were extremely significantly lower than those in the control group; in the experimental group, the expressions of GA3 similar genes were all extremely significantly higher than those in the control group, and the expressions all increased with the increase of low temperature culture time. DISCUSSION We found that the high expression of gibberellin genes may play an important role in the process of low temperature promotion of L. chinense var. rubrum flowering, and in the future, it may be possible to regulate L. chinense var. rubrum flowering by simply spraying exogenous gibberellin instead of the promotion effect of low temperature.
Collapse
Affiliation(s)
- Damao Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Qianru Chen
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Xia Zhang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Wenqi Cai
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yang Liu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Lili Xiang
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaoying Yu
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
| | - Yanlin Li
- Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha, China
- Kunpeng Institute of Modern Agriculture, Foshan, China
| |
Collapse
|
13
|
Xu Y, Wang R, Ma P, Cao J, Cao Y, Zhou Z, Li T, Wu J, Zhang H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1446-1460. [PMID: 35700097 PMCID: PMC9452762 DOI: 10.1111/mpp.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides-responsive miRNA designated zma-unmiR4 in maize kernels. The expression of zma-unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma-unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma-unmiR4-mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence-related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma-unmiR4-ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Yufang Xu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Renjie Wang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peipei Ma
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jiansheng Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yan Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zijian Zhou
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Tao Li
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jianyu Wu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Huiyong Zhang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
14
|
Tsotetsi T, Nephali L, Malebe M, Tugizimana F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? PLANTS (BASEL, SWITZERLAND) 2022; 11:2482. [PMID: 36235347 PMCID: PMC9571655 DOI: 10.3390/plants11192482] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/12/2023]
Abstract
The rhizosphere is a thin film of soil that surrounds plant roots and the primary location of nutrient uptake, and is where important physiological, chemical, and biological activities are occurring. Many microbes invade the rhizosphere and have the capacity to promote plant growth and health. Bacillus spp. is the most prominent plant growth promoting rhizobacteria due to its ability to form long-lived, stress-tolerant spores. Bacillus-plant interactions are driven by chemical languages constructed by a wide spectrum of metabolites and lead to enhanced plant growth and defenses. Thus, this review is a synthesis and a critical assessment of the current literature on the application of Bacillus spp. in agriculture, highlighting gaps that remain to be explored to improve and expand on the Bacillus-based biostimulants. Furthermore, we suggest that omics sciences, with a focus on metabolomics, offer unique opportunities to illuminate the chemical intercommunications between Bacillus and plants, to elucidate biochemical and molecular details on modes of action of Bacillus-based formulations, to generate more actionable insights on cellular and molecular events that explain the Bacillus-induced growth promotion and stress resilience in plants.
Collapse
Affiliation(s)
- Teboho Tsotetsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Lerato Nephali
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Motumiseng Malebe
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
- International R&D Division, Omnia Nutriology, Omnia Group (Pty) Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
15
|
Votta C, Fiorilli V, Haider I, Wang JY, Balestrini R, Petřík I, Tarkowská D, Novák O, Serikbayeva A, Bonfante P, Al‐Babili S, Lanfranco L. Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1688-1700. [PMID: 35877598 PMCID: PMC9543690 DOI: 10.1111/tpj.15917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The Oryza sativa (rice) carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a plant growth-promoting apocarotenoid. A zas mutant line showed reduced arbuscular mycorrhizal (AM) colonization, but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization. Micromolar exogenous supply of zaxinone rescued root growth but not the mycorrhizal defects of the zas mutant, and even reduced mycorrhization in wild-type and zas genotypes. The zas line did not display the increase in the level of strigolactones (SLs) that was observed in wild-type plants at 7 days post-inoculation with AM fungus. Moreover, exogenous treatment with the synthetic SL analog GR24 rescued the zas mutant mycorrhizal phenotype, indicating that the lower AM colonization rate of zas is caused by a deficiency in SLs at the early stages of the interaction, and indicating that during this phase OsZAS activity is required to induce SL production, possibly mediated by the Dwarf14-Like (D14L) signaling pathway. OsZAS is expressed in arbuscule-containing cells, and OsPT11prom::OsZAS transgenic lines, where OsZAS expression is driven by the OsPT11 promoter active in arbusculated cells, exhibit increased mycorrhization compared with the wild type. Overall, our results show that the genetic manipulation of OsZAS activity in planta leads to a different effect on AM symbiosis from that of exogenous zaxinone treatment, and demonstrate that OsZAS influences the extent of AM colonization, acting as a component of a regulatory network that involves SLs.
Collapse
Affiliation(s)
- Cristina Votta
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Raffaella Balestrini
- National Research CouncilInstitute for Sustainable Plant ProtectionTurin10135Italy
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of SciencePalacký University and Institute of Experimental Botany, The Czech Academy of SciencesOlomouc78371Czech Republic
| | - Akmaral Serikbayeva
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Paola Bonfante
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| | - Salim Al‐Babili
- The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science and Engineering (BESE)King Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Luisa Lanfranco
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10125Italy
| |
Collapse
|
16
|
Primary Growth Effect of Salix viminalis L. CV. Inger and Tordis in Controlled Conditions by Exploring Optimum Cutting Lengths and Rhizogenesis Treatments. SUSTAINABILITY 2022. [DOI: 10.3390/su14159272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The major disadvantage of setting up a willow coppice is the low survival rate, which reduces economic efficiency and crop sustainability. The aim of this research was to test, under controlled conditions, the impact of water, gibberellic acid A3 (0.05%), and humic acid (0.2%) on the growth and development of two willow clones. Under humic acid treatment, 20 cm cuttings of the Tordis clone developed up to 15 roots, and 25 cm cuttings developed more than 23. In comparison, water stimulated more than 15 roots for both 20 and 25 cm cuttings. Gibberellins acted as an inhibitor, especially on the roots, and the cuttings dried out from the top to the middle, with weak development of shoots and callus formation. For both clones, the highest number of active buds was observed on 20 and 25 cm cuttings grown in water, with more than four for Inger and more than seven for Tordis. Root development of the Inger clone had a maximum of eight for 25 cm cuttings grown in water; it was three times lower in the same variant of Tordis and two times lower for the Tordis clone with humic acid treatment. In general, Inger cuttings of 15 and 25 cm highlighted a delayed root formation when humic acids and gibberellins were applied. In controlled condition experiments, the Tordis clone was more suitable owing to its higher development and increased growth stability.
Collapse
|
17
|
Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gibberellins are amongst the main plant growth regulators. Discovered over a century ago, the interest in gibberellins research is growing due to their current and potential applications in crop production and their role in the responses to environmental stresses. In the present review, the current knowledge on gibberellins’ homeostasis and modes of action is outlined. Besides this, the complex interrelations between gibberellins and other plant growth regulators are also described, providing an intricate network of interactions that ultimately drives towards precise and specific gene expression. Thus, genes and proteins identified as being involved in gibberellin responses in model and non-model species are highlighted. Furthermore, the molecular mechanisms governing the gibberellins’ relation to stress responses are also depicted. This review aims to provide a comprehensive picture of the state-of-the-art of the current perceptions of the interactions of gibberellins with other phytohormones, and their responses to plant stresses, thus allowing for the identification of the specific mechanisms involved. This knowledge will help us to improve our understanding of gibberellins’ biology, and might help increase the biotechnological toolbox needed to refine plant resilience, particularly under a climate change scenario.
Collapse
|
18
|
The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031231] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation is a cost-effective and sustainable technology used to clean up pollutants from soils and waters through the use of plant species. Indeed, plants are naturally capable of absorbing metals and degrading organic molecules. However, in several cases, the presence of contaminants causes plant suffering and limited growth. In such situations, thanks to the production of specific root exudates, plants can engage the most suitable bacteria able to support their growth according to the particular environmental stress. These plant growth-promoting rhizobacteria (PGPR) may facilitate plant growth and development with several beneficial effects, even more evident when plants are grown in critical environmental conditions, such as the presence of toxic contaminants. For instance, PGPR may alleviate metal phytotoxicity by altering metal bioavailability in soil and increasing metal translocation within the plant. Since many of the PGPR are also hydrocarbon oxidizers, they are also able to support and enhance plant biodegradation activity. Besides, PGPR in agriculture can be an excellent support to counter the devastating effects of abiotic stress, such as excessive salinity and drought, replacing expensive inorganic fertilizers that hurt the environment. A better and in-depth understanding of the function and interactions of plants and associated microorganisms directly in the matrix of interest, especially in the presence of persistent contamination, could provide new opportunities for phytoremediation.
Collapse
|
19
|
Shtin M, Dello Ioio R, Del Bianco M. It's Time for a Change: The Role of Gibberellin in Root Meristem Development. FRONTIERS IN PLANT SCIENCE 2022; 13:882517. [PMID: 35592570 PMCID: PMC9112047 DOI: 10.3389/fpls.2022.882517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 05/21/2023]
Abstract
One of the most amazing characteristics of plants is their ability to grow and adapt their development to environmental changes. This fascinating feature is possible thanks to the activity of meristems, tissues that contain lasting self-renewal stem cells. Because of its simple and symmetric structure, the root meristem emerged as a potent system to uncover the developmental mechanisms behind the development of the meristems. The root meristem is formed during embryogenesis and sustains root growth for all the plant's lifetime. In the last decade, gibberellins have emerged as a key regulator for root meristem development. This phytohormone functions as a molecular clock for root development. This mini review discusses the latest advances in understanding the role of gibberellin in root development and highlights the central role of this hormone as developmental timer.
Collapse
Affiliation(s)
- Margaryta Shtin
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
- *Correspondence: Raffaele Dello Ioio,
| | | |
Collapse
|
20
|
Han S, Jiao Z, Niu MX, Yu X, Huang M, Liu C, Wang HL, Zhou Y, Mao W, Wang X, Yin W, Xia X. Genome-Wide Comprehensive Analysis of the GASA Gene Family in Populus. Int J Mol Sci 2021; 22:ijms222212336. [PMID: 34830215 PMCID: PMC8624709 DOI: 10.3390/ijms222212336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.
Collapse
Affiliation(s)
- Shuo Han
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Zhiyin Jiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Xiao Yu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Mengbo Huang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Yangyan Zhou
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Wei Mao
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
- Correspondence: (W.Y.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
- Correspondence: (W.Y.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| |
Collapse
|
21
|
Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol 2021; 105:8629-8645. [PMID: 34698898 DOI: 10.1007/s00253-021-11492-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Microbial plant biostimulants (MPBs) are capable of improving the productivity and quality of crops by activating plant physiological and molecular processes, representing an efficient tool in sustainable agriculture. Through phytohormone production, MPBs are capable of regulating plant physiological processes, increasing the productivity and quality of crops, in addition to being an efficient alternative in the industrial production of phytohormones. Bacillus is a bacterial genus with various species on the market being used as biopesticides, due to their ability to produce antimicrobial, nematicidal and insecticidal compounds. The capability of Bacillus species to protect plants against pests and/or pathogens also entails the triggering or increase of plant defense responses. Furthermore, a relevant number of species from the genus Bacillus provoke plant growth promotion by different mechanisms such as increasing the tolerance of their host plants under abiotic stress conditions or improving plant nutrition. In several cases, the plant response is mediated by the bacterial production of phytohormones. In the present work, all studies from recent decades where the production of phytohormones by Bacillus species are reported, highlighting their role in host plants and the mechanisms by which they are capable of increasing plant growth, promoting their development, and improving their response to different stresses. KEY POINTS: • Different Bacillus-species are known as agricultural biopesticides. • Bacillus role as biostimulants is being increasingly addressed. • Bacillus represents a good source of phytohormones of agricultural interest.
Collapse
|
22
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
23
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
24
|
Li W, Xiang F, Su Y, Luo Z, Luo W, Zhou L, Liu H, Xiao L. Gibberellin Increases the Bud Yield and Theanine Accumulation in Camellia sinensis (L.) Kuntze. Molecules 2021; 26:molecules26113290. [PMID: 34072521 PMCID: PMC8198828 DOI: 10.3390/molecules26113290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 μM solution of GA3 containing 1‰ tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Fen Xiang
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Zhoufei Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
| | - Lingyun Zhou
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Hongyan Liu
- Tea Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China; (F.X.); (L.Z.); (H.L.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410125, China; (W.L.); (Y.S.); (Z.L.); (W.L.)
- Correspondence: ; Tel.: +86-073-184-635-261
| |
Collapse
|
25
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
26
|
Galeano E, Thomas BR. Effect of elevated gibberellic acid application on growth and gene expression patterns in white spruce families from a tree improvement program in Alberta, Canada. TREE PHYSIOLOGY 2021; 41:472-490. [PMID: 33080619 DOI: 10.1093/treephys/tpaa133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nine open-pollinated families of Picea glauca (Moench) Voss from the Region D1 Controlled Parentage Program (Alberta, Canada) were systematically chosen from fast, medium and slow-growth rankings based on breeding values for height from field progeny tests at age 30 years. Seeds from these families were sown and grown to age 3 years to analyze the performance and correlations of growth, physiological traits and expression of gibberellin-related genes, with and without elevated gibberellic acid 3 (GA3) application, under greenhouse conditions. We observed a significant interaction effect between families and growth groups subjected to 50 μg μl-1 of GA3 treatment, causing a decrease in apical internode length, diameter, volume and absolute transcript level for fast-growing families but an increase for families in the slow-growth group for the same traits. We also observed that in the apical internode, the gene PgGA20ox1 had significantly more relative expression under the elevated GA3 treatment than the control trees. In the stem, PgGA3ox1 showed a significantly higher relative expression under elevated GA3 treatment compared with control trees. Also, the slow-growth group showed more relative expression of PgGA20ox1 (in the apical internode) and PgGA3ox1 (in the stem) than the fast-growth group. The apical internode length and diameter significantly increased by 24% and 16%, respectively, with the hormone treatment in the slow growing group. In general, the PgGID1 and PgDELLA1 genes were upregulated and downregulated respectively, in spruce shoots under the GA3 treatment, meaning a positive feedback regulation by those genes were influencing PgGA20ox1 and PgGA3ox1 expression in that tissue type. Moreover, there was a significant correlation between absolute transcript levels of PgGA20ox1 in the apical internode and apical internode length, and absolute transcript levels of PgGA3ox1 in the stem and the diameter, in the fast-growth group families. This study shows that expression of GA genes is a limiting factor for growth in certain white spruce families with a complex feedback mechanism. Finally, absolute transcript levels of endogenous GA relative to growth parameters in juvenile seedlings could potentially be used to accelerate the early selection of families with inherently rapid apical and radial growth expansion.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Barb R Thomas
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
27
|
Bai Y, Shen Y, Zhang Z, Jia Q, Xu M, Zhang T, Fang H, Yu X, Li L, Liu D, Qi X, Chen Z, Wu S, Zhang Q, Liang C. A GPAT1 Mutation in Arabidopsis Enhances Plant Height but Impairs Seed Oil Biosynthesis. Int J Mol Sci 2021; 22:ijms22020785. [PMID: 33466786 PMCID: PMC7829857 DOI: 10.3390/ijms22020785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.
Collapse
Affiliation(s)
- Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.S.); (Z.C.)
| | - Zhiqiang Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Qianru Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Q.J.); (Q.Z.)
| | - Mengyuan Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (S.W.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhide Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.S.); (Z.C.)
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (S.W.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Q.J.); (Q.Z.)
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
28
|
Hedden P. The Current Status of Research on Gibberellin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1832-1849. [PMID: 32652020 PMCID: PMC7758035 DOI: 10.1093/pcp/pcaa092] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 05/23/2023]
Abstract
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- Laboratory of Growth Regulators, Palack� University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
29
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
30
|
The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci U S A 2020; 117:31500-31509. [PMID: 33219124 PMCID: PMC7733822 DOI: 10.1073/pnas.2013305117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.
Collapse
|
31
|
Svolacchia N, Salvi E, Sabatini S. Arabidopsis primary root growth: let it grow, can't hold it back anymore! CURRENT OPINION IN PLANT BIOLOGY 2020; 57:133-141. [PMID: 33096518 DOI: 10.1016/j.pbi.2020.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In multicellular organisms, growth is defined by those processes that allow an organ to increase in mass, namely cell proliferation - that increases the number of cells - and cell expansion - that increases their volume. For an organ to achieve a functional shape and a characteristic final size both these processes need to be tightly coordinated. In roots, these processes stand behind root primary growth, which results in lengthening of the root along its longitudinal axis, and secondary growth, which results in an increase of the root thickness. In this review, we will analyze latest advances in the study of the molecular mechanisms involved in root primary growth, focusing on the model species Arabidopsis thaliana, where some molecular factors and networks responsible for regulating its self-organized primary growth have been identified.
Collapse
Affiliation(s)
- Noemi Svolacchia
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy
| | - Elena Salvi
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy.
| |
Collapse
|
32
|
Kong X, Chen L, Wei T, Zhou H, Bai C, Yan X, Miao Z, Xie J, Zhang L. Transcriptome analysis of biological pathways associated with heterosis in Chinese cabbage. Genomics 2020; 112:4732-4741. [PMID: 32798717 DOI: 10.1016/j.ygeno.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
Chinese cabbage is an important vegetable in Asia, and high-yielding hybrids are needed to cope with the growing demand. A comparative transcriptome profiling was conducted to reveal the differentially expressed genes (DEGs) associated with heterosis in two hybrids relative to their parents. Our data suggests that heterosis is underlined by a significant upregulation of gene expression. High expression of DEGs in glycolysis and photosynthesis pathways in hybrids depicted their relation with growth and hybrid vigor. Besides, DEGs related to auxin, abscisic acid, ethylene and gibberellin were identified, implying that these hormones may boost the mechanisms of growth and developmental processes in the hybrids. Furthermore, transcription factors, including bHLH, ERF, MYB and WRKY were predicted to regulate downstream genes linked to hybrid vigor. Collectively, the present study will be helpful for a better understanding of the regulation mechanisms of heterosis to aid cabbage yield improvement.
Collapse
Affiliation(s)
- Xiaoping Kong
- Horticulture College, Gansu Agricultural University, China; Xining Vegetable Technical Service Center, China
| | - Lin Chen
- Horticulture College, Northwest A & F Sci-tech University, China
| | - Tingzhen Wei
- Xining Vegetable Technical Service Center, China
| | - Hongwei Zhou
- Xining Vegetable Technical Service Center, China
| | | | | | - Zenjian Miao
- Xining Vegetable Technical Service Center, China
| | - Jianming Xie
- Horticulture College, Gansu Agricultural University, China.
| | - Lugang Zhang
- Horticulture College, Northwest A & F Sci-tech University, China.
| |
Collapse
|
33
|
Liu H, Wen Y, Cui M, Qi X, Deng R, Gao J, Cheng Z. Histological, Physiological and Transcriptomic Analysis Reveal Gibberellin-Induced Axillary Meristem Formation in Garlic ( Allium sativum). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9080970. [PMID: 32751960 PMCID: PMC7464525 DOI: 10.3390/plants9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
The number of cloves in a garlic bulb is controlled by axillary meristem differentiation, which directly determines the propagation efficiency. Our previous study showed that injecting garlic plants with gibberellins (GA3) solution significantly increased clove number per bulb. However, the physiological and molecular mechanism of GA-induced axillary bud formation is still unknown. Herein, dynamic changes in histology, phytohormones, sugars and related genes expression at 2, 4, 8, 16 and 32 days after treatment (DAT) were investigated. Histological results indicated two stages (axillary meristem initiation and dormancy) were in the period of 0-30 days after GA3 treatment. Application of GA3 caused a significant increase of GA3 and GA4, and the downregulation of AsGA20ox expression. Furthermore, the change trends in zeatin riboside (ZR) and soluble sugar were the same, in which a high level of ZR at 2 DAT and high content of soluble sugar, glucose and fructose at 4 DAT were recorded, and a low level of ZR and soluble sugar arose at 16 and 32 DAT. Overall, injection of GA3 firstly caused the downregulation of AsGA20ox, a significant increase in the level of ZR and abscisic acid (ABA), and the upregulation of AsCYP735 and AsAHK to activate axillary meristem initiation. Low level of ZR and soluble sugar and a high level of sucrose maintained axillary meristem dormancy.
Collapse
|
34
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
35
|
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2479-2489. [PMID: 32067041 PMCID: PMC7210752 DOI: 10.1093/jxb/eraa050] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms form the largest group of land plants and display an astonishing diversity of floral structures. The development of flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, spacing on the placenta, and development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length open up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-Leon, CP 36824 Irapuato, Gto., Mexico
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| |
Collapse
|
36
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 PMCID: PMC6971993 DOI: 10.1186/s12870-020-2250-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| | - Francisco R. Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113 Valencia, Spain
| |
Collapse
|
37
|
Ventimilla D, Domingo C, González-Ibeas D, Talon M, Tadeo FR. Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC PLANT BIOLOGY 2020; 20:34. [PMID: 31959115 DOI: 10.1186/s12870-020-2250-2258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.
Collapse
Affiliation(s)
- Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Concha Domingo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Daniel González-Ibeas
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain
| | - Francisco R Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km 10,7 Moncada, E-46113, Valencia, Spain.
| |
Collapse
|
38
|
Gazara RK, de Oliveira EAG, Rodrigues BC, Nunes da Fonseca R, Oliveira AEA, Venancio TM. Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor. Sci Rep 2019; 9:9601. [PMID: 31270425 PMCID: PMC6610145 DOI: 10.1038/s41598-019-45898-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Gibberellins (GA) are key positive regulators of seed germination. Although the GA effects on seed germination have been studied in a number of species, little is known about the transcriptional reprogramming modulated by GA during this phase in species other than Arabidopsis thaliana. Here we report the transcriptome analysis of soybean embryonic axes during germination in the presence of paclobutrazol (PBZ), a GA biosynthesis inhibitor. We found a number of differentially expressed cell wall metabolism genes, supporting their roles in cell expansion during germination. Several genes involved in the biosynthesis and signaling of other phytohormones were also modulated, indicating an intensive hormonal crosstalk at the embryonic axis. We have also found 26 photosynthesis genes that are up-regulated by PBZ at 24 hours after imbibition (HAI) and down-regulated at 36 HAI, which led us to suggest that this is part of a strategy to implement an autotrophic growth program in the absence of GA-driven mobilization of reserves. Finally, 30 transcription factors (mostly from the MYB, bHLH, and bZIP families) were down-regulated by PBZ and are likely downstream GA targets that will drive transcriptional changes during germination.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Eduardo A G de Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Bruno C Rodrigues
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Macaé, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Macaé, Brazil
| | - Antônia Elenir A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.
| |
Collapse
|
39
|
Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS. Advances in research on the carrot, an important root vegetable in the Apiaceae family. HORTICULTURE RESEARCH 2019; 6:69. [PMID: 31231527 PMCID: PMC6544626 DOI: 10.1038/s41438-019-0150-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 223003 Huaian, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| |
Collapse
|
40
|
Roeder AH, Jill Harrison C. Editorial overview: Scaling development through the plant tree of life. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:A1-A4. [PMID: 30850085 DOI: 10.1016/j.pbi.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Adrienne Hk Roeder
- Weill Institute for Cell and Molecular Biology and Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
41
|
Wexler S, Schayek H, Rajendar K, Tal I, Shani E, Meroz Y, Dobrovetsky R, Weinstain R. Characterizing gibberellin flow in planta using photocaged gibberellins. Chem Sci 2018; 10:1500-1505. [PMID: 30809367 PMCID: PMC6354844 DOI: 10.1039/c8sc04528c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Gibberellins (GAs) are ubiquitous plant hormones that coordinate central developmental and adaptive growth processes in plants. Accurate movement of GAs throughout the plant from their sources to their destination sites is emerging to be a highly regulated and directed process. We report on the development of novel photocaged gibberellins that, in combination with a genetically encoded GA-response marker, provide a unique platform to study GA movement at high-resolution, in real time and in living, intact plants. By applying this platform to the Arabidopsis thaliana endogenous bioactive gibberellin GA4, we measure kinetic parameters of its flow, such as decay length and velocity, in vivo.
Collapse
Affiliation(s)
- Shira Wexler
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Hilla Schayek
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Kandhikonda Rajendar
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Iris Tal
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Eilon Shani
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Yasmine Meroz
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| | - Roman Dobrovetsky
- School of Chemistry , Raymond and Beverly Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv 69978 , Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security , Faculty of Life Sciences , Tel Aviv University , Tel Aviv 69978 , Israel .
| |
Collapse
|