1
|
Kuijer HNJ, Wang JY, Bougouffa S, Abrouk M, Jamil M, Incitti R, Alam I, Balakrishna A, Alvarez D, Votta C, Chen GTE, Martínez C, Zuccolo A, Berqdar L, Sioud S, Fiorilli V, de Lera AR, Lanfranco L, Gojobori T, Wing RA, Krattinger SG, Gao X, Al-Babili S. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility. Nat Commun 2024; 15:6906. [PMID: 39134551 PMCID: PMC11319436 DOI: 10.1038/s41467-024-51189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.
Collapse
Affiliation(s)
- Hendrik N J Kuijer
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Michael Abrouk
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Roberto Incitti
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derry Alvarez
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Cristina Votta
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Guan-Ting Erica Chen
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Andrea Zuccolo
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Institute of Crop Science, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy
| | - Lamis Berqdar
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salim Sioud
- Analytical Chemistry Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, 36310, Vigo, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino; Viale Mattioli 25, Torino, 10125, Italy
| | - Takashi Gojobori
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Plant Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Bawin T, Didriksen A, Faehn C, Olsen S, Sørensen I, Rose JKC, Krause K. Cuscuta campestris fine-tunes gene expression during haustoriogenesis as an adaptation to different hosts. PLANT PHYSIOLOGY 2023; 194:258-273. [PMID: 37706590 PMCID: PMC10756757 DOI: 10.1093/plphys/kiad505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-β-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Corine Faehn
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| |
Collapse
|
3
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
4
|
Jhu MY, Ellison EE, Sinha NR. CRISPR gene editing to improve crop resistance to parasitic plants. Front Genome Ed 2023; 5:1289416. [PMID: 37965302 PMCID: PMC10642197 DOI: 10.3389/fgeed.2023.1289416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Evan E. Ellison
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Jhu MY, Kawa D, Brady SM. The genetic basis of plants' battle against witchweeds: linking immune responses to distinct resistance mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4903-4909. [PMID: 37702012 PMCID: PMC10498022 DOI: 10.1093/jxb/erad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This article comments on:
Mutinda S, Mobegi FM, Hale B, Dayou O, Ateka E, Wijeratne A, Wicke S, Bellis ES, Runo S. 2023. Resolving intergenotypic Striga resistance in sorghum. Journal of Experimental Botany 74, 5294–5306.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
- Plant Stress Resilience, Department of Biology, Utrecht University, The Netherlands
- Plant Environment Signaling, Department of Biology, Utrecht University, The Netherlands
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
7
|
Albanova IA, Zagorchev LI, Teofanova DR, Odjakova MK, Kutueva LI, Ashapkin VV. Host Resistance to Parasitic Plants-Current Knowledge and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1447. [PMID: 37050073 PMCID: PMC10096732 DOI: 10.3390/plants12071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Parasitic flowering plants represent a diverse group of angiosperms, ranging from exotic species with limited distribution to prominent weeds, causing significant yield losses in agricultural crops. The major damage caused by them is related to the extraction of water and nutrients from the host, thus decreasing vegetative growth, flowering, and seed production. Members of the root parasites of the Orobanchaceae family and stem parasites of the genus Cuscuta are among the most aggressive and damaging weeds, affecting both monocotyledonous and dicotyledonous crops worldwide. Their control and eradication are hampered by the extreme seed longevity and persistence in soil, as well as their taxonomic position, which makes it difficult to apply selective herbicides not damaging to the hosts. The selection of resistant cultivars is among the most promising approaches to deal with this matter, although still not widely employed due to limited knowledge of the molecular mechanisms of host resistance and inheritance. The current review aims to summarize the available information on host resistance with a focus on agriculturally important parasitic plants and to outline the future perspectives of resistant crop cultivar selection to battle the global threat of parasitic plants.
Collapse
Affiliation(s)
- Ivanela A. Albanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyuben I. Zagorchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Denitsa R. Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Mariela K. Odjakova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyudmila I. Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vasily V. Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
8
|
Harnessing plant resistance against Striga spp. parasitism in major cereal crops for enhanced crop production and food security in Sub-Saharan Africa: a review. Food Secur 2023. [DOI: 10.1007/s12571-023-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
AbstractGiven their long-lasting seed viability, 15–20-year lifespan and their high seed production levels, a significant impact of parasitic plant Striga spp. on African food production is inevitable. Over the last decades, climate change has increasingly favoured the adaptability, spread and virulence of major Striga species, S. hermonthica and S. asiatica, across arable land in Sub-Saharan Africa (SSA). These parasitic weeds are causing important yield losses on several staple food crops and endangering food and nutritional security in many SSA countries. Losses caused by Striga spp. are amplified by low soil fertility and recurrent droughts. The impact of Striga parasitism has been characterized through different phenotypic and genotypic traits assessment of their host plants. Among all control strategies, host-plant resistance remains the most pro-poor, easy-to-adopt, sustainable and eco-friendly control strategy against Striga parasitism. This review highlights the impact of Striga parasitism on food security in SSA and reports recent results related to the genetic basis of different agronomic, pheno-physiological and biochemical traits associated with the resistance to Striga in major African cereal food crops.
Collapse
|
9
|
Aguilar-Venegas M, Quintana-Rodríguez E, Aguilar-Hernández V, López-García CM, Conejo-Dávila E, Brito-Argáez L, Loyola-Vargas VM, Vega-Arreguín J, Orona-Tamayo D. Protein Profiling of Psittacanthus calyculatus during Mesquite Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:464. [PMID: 36771550 PMCID: PMC9920738 DOI: 10.3390/plants12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Psittacanthus calyculatus is a hemiparasite mistletoe that represents an ecological problem due to the impacts caused to various tree species of ecological and commercial interest. Although the life cycle for the Psittacanthus genus is well established in the literature, the development stages and molecular mechanism implicated in P. calyculatus host infection are poorly understood. In this study, we used a manageable infestation of P. laevigata with P. calyculatus to clearly trace the infection, which allowed us to describe five phenological infective stages of mistletoe on host tree branches: mature seed (T1), holdfast formation (T2), haustorium activation (T3), haustorium penetration (T4), and haustorium connection (T5) with the host tree. Proteomic analyses revealed proteins with a different accumulation and cellular processes in infective stages. Activities of the cell wall-degrading enzymes cellulase and β-1,4-glucosidase were primarily active in haustorium development (T3), while xylanase, endo-glucanase, and peptidase were highly active in the haustorium penetration (T4) and xylem connection (T5). Patterns of auxins and cytokinin showed spatial concentrations in infective stages and moreover were involved in haustorium development. These results are the first evidence of proteins, cell wall-degrading enzymes, and phytohormones that are involved in early infection for the Psittacanthus genus, and thus represent a general infection mechanism for other mistletoe species. These results could help to understand the molecular dialogue in the establishment of P. calyculatus parasitism.
Collapse
Affiliation(s)
- Montserrat Aguilar-Venegas
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | | - Víctor Aguilar-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | | | - Efraín Conejo-Dávila
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria CP 36275, Guanajuato, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Julio Vega-Arreguín
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | |
Collapse
|
10
|
Samejima H, Sugimoto Y. Phenotypic Diversity in Pre- and Post-Attachment Resistance to Striga hermonthica in a Core Collection of Rice Germplasms. PLANTS (BASEL, SWITZERLAND) 2022; 12:19. [PMID: 36616148 PMCID: PMC9824375 DOI: 10.3390/plants12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In sub-Saharan Africa, upland rice cultivation is expanding into rainfed areas endemic to the root parasitic weed Striga hermonthica. We evaluated the Striga resistance of 69 accessions from the World Rice Core Collection (WRC) to estimate the phenotypic diversity within the Oryza sativa species. Pre-attachment resistance was screened based on the germination-inducing activities of the root exudates, while post-attachment resistance was screened through rhizotron evaluation. The 69 WRC accessions showed a wide variation in both pre- and post-attachment resistance. Root exudates of one accession induced 0.04% germination, and those of some accessions displayed >80% germination. In the evaluation of post-attachment resistance, the successful parasitism percentages ranged from 1.3% to 60.7%. The results of these resistance evaluations were subjected to cluster analysis, which recognized five groups: group I of 27 accessions, with high pre- and post-attachment resistance; group II of 12 accessions, with high post-attachment resistance but moderate pre-attachment resistance; group III of 4 accessions, with low pre-attachment resistance; group IV of 13 accessions, with low post-attachment resistance; and group V of 13 accessions, with low pre- and post-attachment resistance. The wide variation found in the WRC accessions will help to elucidate the genetic factors underpinning pre- and post-attachment resistance.
Collapse
|
11
|
Jhu MY, Sinha NR. Parasitic Plants: An Overview of Mechanisms by Which Plants Perceive and Respond to Parasites. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:433-455. [PMID: 35363532 DOI: 10.1146/annurev-arplant-102820-100635] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Department of Plant Biology, University of California, Davis, California, USA;
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California, USA;
| |
Collapse
|
12
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
13
|
Jhu MY, Farhi M, Wang L, Zumstein K, Sinha NR. Investigating Host and Parasitic Plant Interaction by Tissue-Specific Gene Analyses on Tomato and Cuscuta campestris Interface at Three Haustorial Developmental Stages. FRONTIERS IN PLANT SCIENCE 2022; 12:764843. [PMID: 35222447 PMCID: PMC8866705 DOI: 10.3389/fpls.2021.764843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 05/26/2023]
Abstract
Parasitic weeds cause billions of dollars in agricultural losses each year worldwide. Cuscuta campestris (C. campestris), one of the most widespread and destructive parasitic plants in the United States, severely reduces yield in tomato plants. Reducing the spread of parasitic weeds requires understanding the interaction between parasites and hosts. Several studies have identified factors needed for parasitic plant germination and haustorium induction, and genes involved in host defense responses. However, knowledge of the mechanisms underlying the interactions between host and parasitic plants, specifically at the interface between the two organisms, is relatively limited. A detailed investigation of the crosstalk between the host and parasite at the tissue-specific level would enable development of effective parasite control strategies. To focus on the haustorial interface, we used laser-capture microdissection (LCM) with RNA-seq on early, intermediate and mature haustorial stages. In addition, the tomato host tissue that immediately surround the haustoria was collected to obtain tissue- resolution RNA-Seq profiles for C. campestris and tomato at the parasitism interface. After conducting RNA-Seq analysis and constructing gene coexpression networks (GCNs), we identified CcHB7, CcPMEI, and CcERF1 as putative key regulators involved in C. campestris haustorium organogenesis, and three potential regulators, SlPR1, SlCuRe1-like, and SlNLR, in tomatoes that are involved in perceiving signals from the parasite. We used host-induced gene silencing (HIGS) transgenic tomatoes to knock-down the candidate genes in C. campestris and produced CRISPR transgenic tomatoes to knock out candidate genes in tomatoes. The interactions of C. campestris with these transgenic lines were tested and compared with that in wild-type tomatoes. The results of this study reveal the tissue-resolution gene regulatory mechanisms at the parasitic plant-host interface and provide the potential of developing a parasite-resistant system in tomatoes.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Department of Plant Biology, University of California, Davis, CA, United States
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Moran Farhi
- Department of Plant Biology, University of California, Davis, CA, United States
- The Better Meat Co., West Sacramento, CA, United States
| | - Li Wang
- Department of Plant Biology, University of California, Davis, CA, United States
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, CA, United States
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, CA, United States
| |
Collapse
|
14
|
He P, Li Y, Xu N, Peng C, Meng F. Predicting the suitable habitats of parasitic desert species based on a niche model with Haloxylon ammodendron and Cistanche deserticola as examples. Ecol Evol 2021; 11:17817-17834. [PMID: 35003642 PMCID: PMC8717296 DOI: 10.1002/ece3.8340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
Haloxylon ammodendron, an excellent tree species for sand fixation and afforestation in the desert areas of western China, is threatened by climate change and anthropogenic activities. The suitable habitat of this species is shrinking at a remarkable rate, although conservation measures have been implemented. Cistanche deserticola is an entirely parasitic herb that occurs in deserts, is a source of "desert ginseng" worldwide, and has extremely high medicinal value. Little is known about using niche models to simulate habitat suitability and evaluate important environmental variables related to parasitic species. In this study, we modeled the current suitable habitat of H. ammodendron and C. deserticola by MaxEnt based on occurrence record data of the distributions of these two species in China. We grouped H. ammodendron and C. deserticola into three groups according to the characteristics of parasitic species and modeled them with environmental factors. The results showed that bioclimate was the most important environmental parameter affecting the H. ammodendron and C. deserticola distribution. Precipitations, such as annual precipitation, precipitation seasonality, and precipitation in the driest quarter, were identified as the most critical parameters. The slope, diurnal temperature range, water vapor pressure, ground-frost frequency, and solar radiation also substantially contributed to the distribution of the two species. The proportions of the most suitable areas for Groups 1, 2, and 3 were 1.2%, 1.3%, and 1.7%, respectively, in China. When combined with cultural geography, five hot spot conservation areas were determined within the distribution of H. ammodendron and C. deserticola. The comprehensive analysis indicated that by using MaxEnt to model the suitable habitat of parasitic species, we further improved the accuracy of the prediction and coupled the error of the distribution of a single species. This study provides a useful reference for the protection of H. ammodendron forests and the management of C. deserticola plantations.
Collapse
Affiliation(s)
- Ping He
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Yunfeng Li
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Key Laboratory of research and development of traditional Chinese medicine in Hebei ProvinceDepartment of traditional Chinese MedicineChengde Medical CollegeChengdeChina
| | - Ning Xu
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Cheng Peng
- School of pharmacyChengdu University of TCMChengduChina
| | - Fanyun Meng
- Beijing Key lab of Traditional Chinese Medicine Protection and UtilizationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
- Engineering Research Center of Natural MedicineMinistry of EducationFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| |
Collapse
|
15
|
Changes in Antioxidative Compounds and Enzymes in Small-Leaved Linden ( Tilia cordata Mill.) in Response to Mistletoe ( Viscum album L.) Infestation. PLANTS 2021; 10:plants10091871. [PMID: 34579405 PMCID: PMC8465490 DOI: 10.3390/plants10091871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/24/2023]
Abstract
Mistletoe infestation leads to a decrease in the growth of woody plants, their longevity, and partial or complete drying of the top, as well as premature death. Various environmental stress factors, both abiotic and biotic, stimulate the formation of reactive oxygen species and the development of oxidative stress in plant tissues. This study aimed to investigate the effect of mistletoe (Viscum album L.) infestation on the response of the antioxidative defense system in leaves of small-leaved linden (Tilia cordata Mill.). Leaves from infested trees were taken from branches (i) without mistletoe, (ii) with 1–2 mistletoe bushes (low degree of infestation), and (iii) with 5–7 mistletoe bushes (high degree of infestation). The relative water content and the chlorophyll a and b contents in leaves from linden branches affected by mistletoe were significantly lower than those in leaves from non-infested trees and from host-tree branches with no mistletoe. At the same time, leaves from branches with low and high degrees of infestation had significantly higher electrolyte leakage, malondialdehyde and hydrogen peroxide content, oxidized forms of ascorbic acid (dehydroascorbic and 2,3-diketogulonic acids), and oxidized glutathione. The results of principal component analysis show that the development of oxidative stress was accompanied by an increase in proline content and in superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase activity. Several biochemical parameters (proline, ascorbic acid, dehydroascorbic acid, glutathione, glutathione peroxidase, ascorbate peroxidase, and dehydroascorbate reductase) were found to be altered in leaves from host-tree branches with no mistletoe. This result indicates that the mistletoe infestation of trees not only causes local changes in the locations of hemiparasite attachment, but also affects the redox metabolism in leaves from other parts of the infested tree.
Collapse
|