1
|
Liu J, Zhong X. Population epigenetics: DNA methylation in the plant omics era. PLANT PHYSIOLOGY 2024; 194:2039-2048. [PMID: 38366882 PMCID: PMC10980424 DOI: 10.1093/plphys/kiae089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Zhang HW, Huang K, Gu ZX, Wu XX, Wang JW, Zhang Y. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex. Nat Commun 2023; 14:3118. [PMID: 37253723 DOI: 10.1038/s41467-023-38619-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
De novo DNA methylation in plants relies on transcription of RNA polymerase V (Pol V) along with KTF1, which produce long non-coding RNAs for recruitment and assembly of the DNA methylation machinery. Here, we report a cryo-EM structure of the Pol V transcription elongation complex bound to KTF1. The structure reveals the conformation of the structural motifs in the active site of Pol V that accounts for its inferior RNA-extension ability. The structure also reveals structural features of Pol V that prevent it from interacting with the transcription factors of Pol II and Pol IV. The KOW5 domain of KTF1 binds near the RNA exit channel of Pol V providing a scaffold for the proposed recruitment of Argonaute proteins to initiate the assembly of the DNA methylation machinery. The structure provides insight into the Pol V transcription elongation process and the role of KTF1 during Pol V transcription-coupled DNA methylation.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Xi Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|