1
|
Kariya Y, Honma M. Applications of model simulation in pharmacological fields and the problems of theoretical reliability. Drug Metab Pharmacokinet 2024; 56:100996. [PMID: 38797090 DOI: 10.1016/j.dmpk.2024.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 05/29/2024]
Abstract
The use of mathematical models has become increasingly prevalent in pharmacological fields, particularly in drug development processes. These models are instrumental in tasks such as designing clinical trials and assessing factors like efficacy, toxicity, and clinical practice. Various types of models have been developed and documented. Nevertheless, emphasizing the reliability of parameter values is crucial, as they play a pivotal role in shaping the behavior of the system. In some instances, parameter values reported previously are treated as fixed values, which can lead to convergence towards values that deviate substantially from those found in actual biological systems. This is especially true when parameter values are determined through fitting to limited observations. To mitigate this risk, the reuse of parameter values from previous reports should be approached with a critical evaluation of their validity. Currently, there is a proposal for a simultaneous search for plausible values for all parameters using comprehensive search algorithms in both pharmacokinetic and pharmacodynamic or systems pharmacological models. Implementing these methodologies can help address issues related to parameter determination. Furthermore, integrating these approaches with methods developed in the field of machine-learning field has the potential to enhance the reliability of parameter values and the resulting model outputs.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Education Center for Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Laboratory of Pharmaceutical Regulatory Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Soepriatna AH, Navarrete-Welton A, Kim TY, Daley MC, Bronk P, Kofron CM, Mende U, Coulombe KLK, Choi BR. Action potential metrics and automated data analysis pipeline for cardiotoxicity testing using optically mapped hiPSC-derived 3D cardiac microtissues. PLoS One 2023; 18:e0280406. [PMID: 36745602 PMCID: PMC9901774 DOI: 10.1371/journal.pone.0280406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/28/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.
Collapse
Affiliation(s)
- Arvin H. Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Allison Navarrete-Welton
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mark C. Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Peter Bronk
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Celinda M. Kofron
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
3
|
Okada JI, Yoshinaga T, Kurokawa J, Washio T, Furukawa T, Sawada K, Sugiura S, Hisada T. Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. Br J Pharmacol 2018; 175:3435-3452. [PMID: 29745425 PMCID: PMC6086978 DOI: 10.1111/bph.14357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
Background and Purpose To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We previously reported a multi‐scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs. Experimental Approach We created a comprehensive hazard map of drug‐induced arrhythmia based on the electrocardiogram (ECG) waveforms simulated under wide range of drug effects using the multi‐scale heart simulator described here, implemented with cell models of human cardiac electrophysiology. Key Results A total of 9075 electrocardiograms constitute the five‐dimensional hazard map, with coordinates representing the extent of the block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr), fast (INa) and late (INa,L) components of the sodium current, L‐type calcium current (ICa,L) and slow delayed rectifier current (IKs)), involved in arrhythmogenesis. Results of the evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in the literature. ECG databases also suggested that the interval between the J‐point and the T‐wave peak is a superior index of arrhythmogenicity when compared to the QT interval due to its ability to characterize the multi‐channel effects compared with QT interval. Conclusion and Implications Because concentration‐dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development.
Collapse
Affiliation(s)
- Jun-Ichi Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | | | - Junko Kurokawa
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takumi Washio
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Sawada
- Global CV Assessment, Eisai Co., Ltd., Ibaraki, Japan
| | - Seiryo Sugiura
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | | |
Collapse
|
4
|
Okada JI, Yoshinaga T, Kurokawa J, Washio T, Furukawa T, Sawada K, Sugiura S, Hisada T. Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator. SCIENCE ADVANCES 2015; 1:e1400142. [PMID: 26601174 PMCID: PMC4640654 DOI: 10.1126/sciadv.1400142] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/04/2015] [Indexed: 05/31/2023]
Abstract
To save time and cost for drug discovery, a paradigm shift in cardiotoxicity testing is required. We introduce a novel screening system for drug-induced arrhythmogenic risk that combines in vitro pharmacological assays and a multiscale heart simulator. For 12 drugs reported to have varying cardiotoxicity risks, dose-inhibition curves were determined for six ion channels using automated patch clamp systems. By manipulating the channel models implemented in a heart simulator consisting of more than 20 million myocyte models, we simulated a standard electrocardiogram (ECG) under various doses of drugs. When the drug concentrations were increased from therapeutic levels, each drug induced a concentration-dependent characteristic type of ventricular arrhythmia, whereas no arrhythmias were observed at any dose with drugs known to be safe. We have shown that our system combining in vitro and in silico technologies can predict drug-induced arrhythmogenic risk reliably and efficiently.
Collapse
Affiliation(s)
- Jun-ichi Okada
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- UT-Heart Inc., 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003, Japan
| | - Takashi Yoshinaga
- Global CV Assessment, Eisai Co. Ltd., Tokodai 5-1-3, Tsukua-shi, Ibaraki 300-2635, Japan
| | - Junko Kurokawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takumi Washio
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- UT-Heart Inc., 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kohei Sawada
- Global CV Assessment, Eisai Co. Ltd., Tokodai 5-1-3, Tsukua-shi, Ibaraki 300-2635, Japan
| | - Seiryo Sugiura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- UT-Heart Inc., 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003, Japan
| | - Toshiaki Hisada
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
- UT-Heart Inc., 3-25-8 Nozawa, Setagaya-ku, Tokyo 154-0003, Japan
| |
Collapse
|
5
|
Trenor B, Gomis-Tena J, Cardona K, Romero L, Rajamani S, Belardinelli L, Giles WR, Saiz J. In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels (Austin) 2015; 7:249-62. [PMID: 23696033 DOI: 10.4161/chan.24905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which may block different channels, remains an important opportunity. Partial block of the late sodium current (I(NaL)) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the settings of free radical challenge or hypoxia. In addition, this approach can attenuate pro-arrhythmic effects of blocking the rapid delayed rectifying K(+) current (I(Kr)). The main goal of our computational work was to develop an in-silico tool for preclinical anti-arrhythmic drug safety assessment, by illustrating the impact of I(Kr)/I(NaL) ratio of steady-state block of drug candidates on "torsadogenic" biomarkers. The O'Hara et al. AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk, i.e., AP duration, triangulation, reverse rate-dependence, transmural dispersion of repolarization and electrocardiogram QT intervals, were calculated using single myocyte and one-dimensional strand simulations. Predetermined amounts of block of I(NaL) and I(Kr) were evaluated. "Safety plots" were developed to illustrate the value of the specific biomarker for selected combinations of IC(50)s for I(Kr) and I(NaL) of potential drugs. The reference biomarkers at baseline changed depending on the "drug" specificity for these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of I(NaL)) yielded a biomarker data set that is considered safe by standard regulatory criteria. This novel in-silico approach is useful for evaluating pro-arrhythmic potential of drugs and drug candidates in the human ventricle.
Collapse
|
6
|
Tsumoto K, Ashihara T, Haraguchi R, Nakazawa K, Kurachi Y. Ischemia-related subcellular redistribution of sodium channels enhances the proarrhythmic effect of class I antiarrhythmic drugs: a simulation study. PLoS One 2014; 9:e109271. [PMID: 25279776 PMCID: PMC4184874 DOI: 10.1371/journal.pone.0109271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/08/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cardiomyocytes located at the ischemic border zone of infarcted ventricle are accompanied by redistribution of gap junctions, which mediate electrical transmission between cardiomyocytes. This ischemic border zone provides an arrhythmogenic substrate. It was also shown that sodium (Na+) channels are redistributed within myocytes located in the ischemic border zone. However, the roles of the subcellular redistribution of Na+ channels in the arrhythmogenicity under ischemia remain unclear. METHODS Computer simulations of excitation conduction were performed in a myofiber model incorporating both subcellular Na+ channel redistribution and the electric field mechanism, taking into account the intercellular cleft potentials. RESULTS We found in the myofiber model that the subcellular redistribution of the Na+ channels under myocardial ischemia, decreasing in Na+ channel expression of the lateral cell membrane of each myocyte, decreased the tissue excitability, resulting in conduction slowing even without any ischemia-related electrophysiological change. The conventional model (i.e., without the electric field mechanism) did not reproduce the conduction slowing caused by the subcellular Na+ channel redistribution. Furthermore, Na+ channel blockade with the coexistence of a non-ischemic zone with an ischemic border zone expanded the vulnerable period for reentrant tachyarrhythmias compared to the model without the ischemic border zone. Na+ channel blockade tended to cause unidirectional conduction block at sites near the ischemic border zone. Thus, such a unidirectional conduction block induced by a premature stimulus at sites near the ischemic border zone is associated with the initiation of reentrant tachyarrhythmias. CONCLUSIONS Proarrhythmia of Na+ channel blockade in patients with old myocardial infarction might be partly attributable to the ischemia-related subcellular Na+ channel redistribution.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Pharmacology, Graduate school of Medicine, Osaka University, Suita, Japan
| | - Takashi Ashihara
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ryo Haraguchi
- Department of Medical Informatics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazuo Nakazawa
- Laboratory of Biomedical Science and Information Management, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate school of Medicine, Osaka University, Suita, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Loewe A, Wilhelms M, Fischer F, Scholz EP, Dössel O, Seemann G. Arrhythmic potency of human ether-à-go-go-related gene mutations L532P and N588K in a computational model of human atrial myocytes. ACTA ACUST UNITED AC 2014; 16:435-43. [DOI: 10.1093/europace/eut375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Hasegawa Y, Mishima M, Shimayoshi T, Amano A, Matsuda T. A study on the relationship between electrical transmural heterogeneity and ventricular energetics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:6854-7. [PMID: 24111319 DOI: 10.1109/embc.2013.6611132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we use cardiovascular simulation to gain new insights on the correlation between electrical heterogeneity and ventricular energetics. Although there are numerous in vivo and in vitro studies on the electrical heterogeneity within the ventricular myocardium, not much attention has been directed to its correlation to cardiovascular mechanics, because of difficulties in simultaneously observing and analyzing multiple spatial scales (the cell, the organ, and the system). We performed simulations with two cardiovascular simulation models, one which uses different myocardial cell models for the epicardial, endocardial, and mid-myocardial cells, and another which uses a homogeneous model throughout the entire myocardium. The epicardial, endocardial, and midmyocardial cell models were created by parametrically tuning a homogenous cell model. From the cardiovascular simulation we obtained pressure-volume loops which were used to calculate cardiovascular energetic efficiency and myocardial contractility. We found that energetic efficiency is higher in the electrically heterogeneous model.
Collapse
|
9
|
Thomas CE, Will Y. The impact of assay technology as applied to safety assessment in reducing compound attrition in drug discovery. Expert Opin Drug Discov 2012; 7:109-22. [DOI: 10.1517/17460441.2012.651122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Models of HERG gating. Biophys J 2011; 101:631-42. [PMID: 21806931 DOI: 10.1016/j.bpj.2011.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 11/21/2022] Open
Abstract
HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of I(Kr), which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations.
Collapse
|
11
|
Sarkar AX, Sobie EA. Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: a computational analysis. Heart Rhythm 2011; 8:1749-55. [PMID: 21699863 DOI: 10.1016/j.hrthm.2011.05.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/27/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND "Repolarization reserve" is frequently invoked to explain why potentially proarrhythmic drugs cause, across a population, a range of changes to cardiac action potentials (APs). However, the mechanisms underlying this interindividual variability are not understood quantitatively. OBJECTIVE The purpose of this study was to perform a novel analysis of mathematical models of ventricular myocytes to quantify repolarization reserve and gain insight into the factors responsible for variability in the response to proarrhythmic drugs. METHODS/RESULTS In several models of human or canine ventricular myocytes, variability was simulated by randomizing model parameters and running repeated simulations. With each randomly generated set of parameters, APs before and after simulated 75% block of the rapid delayed rectifier current (I(Kr)) were calculated. Multivariable regression was performed to determine how much each model parameter attenuated or exacerbated the AP prolongation caused by the I(Kr)-blocking drug. Simulations with a human ventricular myocyte model suggest that drug response is influenced most strongly by (1) the density of I(Kr), (2) the density of slow delayed rectifier current I(Ks), (3) the voltage dependence of I(Kr) inactivation, (4) the density of L-type Ca2+ current, and (5) the kinetics of I(Ks) activation. The analysis also identified mechanisms underlying nonintuitive behavior, such as ionic currents that prolong baseline APs but decrease drug-induced AP prolongation. Finally, the simulations provided quantitative insight into conditions that aggravate the drug response, such as silent ion channel mutations and heart failure. CONCLUSION These modeling results provide the first thorough quantification of repolarization reserve and improve our understanding of interindividual variability in adverse drug reactions.
Collapse
Affiliation(s)
- Amrita X Sarkar
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
12
|
Tsumoto K, Ashihara T, Haraguchi R, Nakazawa K, Kurachi Y. Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction. Biophys J 2011; 100:554-563. [PMID: 21281569 DOI: 10.1016/j.bpj.2010.12.3716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023] Open
Abstract
The gap junction and voltage-gated Na(+) channel play an important role in the action potential propagation. The purpose of this study was to elucidate the roles of subcellular Na(+) channel distribution in action potential propagation. To achieve this, we constructed the myocardial strand model, which can calculate the current via intercellular cleft (electric-field mechanism) together with gap-junctional current (gap-junctional mechanism). We conducted simulations of action potential propagation in a myofiber model where cardiomyocytes were electrically coupled with gap junctions alone or with both the gap junctions and the electric field mechanism. Then we found that the action potential propagation was greatly affected by the subcellular distribution of Na(+) channels in the presence of the electric field mechanism. The presence of Na(+) channels in the lateral membrane was important to ensure the stability of propagation under conditions of reduced gap-junctional coupling. In the poorly coupled tissue with sufficient Na(+) channels in the lateral membrane, the slowing of action potential propagation resulted from the periodic and intermittent dysfunction of the electric field mechanism. The changes in the subcellular Na(+) channel distribution might be in part responsible for the homeostatic excitation propagation in the diseased heart.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| | - Takashi Ashihara
- Department of Cardiovascular and Respiratory Medicine, Heart Rhythm Center, Shiga University of Medical Science, Shiga, Japan
| | - Ryo Haraguchi
- Laboratory of Biomedical Science and Information Management, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Nakazawa
- Laboratory of Biomedical Science and Information Management, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
13
|
Obiol-Pardo C, Gomis-Tena J, Sanz F, Saiz J, Pastor M. A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. J Chem Inf Model 2011; 51:483-92. [DOI: 10.1021/ci100423z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cristian Obiol-Pardo
- Research Programme on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Julio Gomis-Tena
- Grupo Bioelectronica I3BH, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Javier Saiz
- Grupo Bioelectronica I3BH, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), IMIM, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
14
|
Haraguchi R, Ashihara T, Namba T, Tsumoto K, Murakami S, Kurachi Y, Ikeda T, Nakazawa K. Transmural dispersion of repolarization determines scroll wave behavior during ventricular tachyarrhythmias. Circ J 2010; 75:80-8. [PMID: 21099125 DOI: 10.1253/circj.cj-10-0071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ventricular tachyarrhythmia is the leading cause of sudden cardiac death, and scroll wave re-entry is known to underlie this condition. Class III antiarrhythmic drugs are commonly used worldwide to treat ventricular tachyarrhythmias; however, these drugs have a proarrhythmic adverse effect and can cause Torsade de Pointes or ventricular fibrillation. Transmural dispersion of repolarization (TDR) has been suggested to be a strong indicator of ventricular tachyarrhythmia induction. However, the role of TDR during sustained scroll wave re-entry is poorly understood. The purpose of the present study was to investigate how TDR affects scroll wave behavior and to provide a novel analysis of the mechanisms that sustain tachyarrhythmias, using computer simulations. METHODS AND RESULTS Computer simulations were carried out to quantify the TDR and QT interval under a variety of I(Ks) and I(Kr) during transmural conduction. Simulated scroll wave re-entries were done under a variety of I(Ks) and I(Kr) in a ventricular wall slab model, and the scroll wave behavior and the filament dynamics (3-dimensional organizing center) were analyzed. A slight increase in TDR, but not in the QT interval, reflected antiarrhythmic properties resulting from the restraint of scroll wave breakup, whereas a marked increase in TDR was proarrhythmic, as a result of scroll wave breakup. CONCLUSIONS The TDR determines the sustainment of ventricular tachyarrhythmias, through control of the scroll wave filament dynamics.
Collapse
Affiliation(s)
- Ryo Haraguchi
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Soubret A, Helmlinger G, Dumotier B, Bibas R, Georgieva A. Modeling and Simulation of Preclinical Cardiac Safety: Towards an Integrative Framework. Drug Metab Pharmacokinet 2009; 24:76-90. [DOI: 10.2133/dmpk.24.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|