1
|
Olejnickova V, Sedmera D. What is the optimal light source for optical mapping using voltage- and calcium-sensitive dyes? Physiol Res 2020; 69:599-607. [DOI: 10.33549/physiolres.934471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Optical mapping is a fluorescence-based physiological method to image spreading of action potential in excitable tissues, such as the heart and central nervous system. Because of the requirements for high speed imaging in low light conditions, highly sensitive high-speed cameras together with an optical system with maximum photon efficiency are required. While the optimization of these two components is relatively straightforward, the choice of the perfect light source is less simple; depending on the other (usually fixed) components, various parameters may acquire different weight in decision-making process. Here we describe the rationale for building an optical mapping setup and consider the relative advantages and disadvantages of three different commonly available light sources: mercury vapor lamp (HBO), xenon lamp (XBO), and light emitting diode (LED). Using the same optical system (fluorescence macroscope) and high-speed camera (Ultima L), we have tested each of the sources for its ability to provide bright and even illumination of the field of view and measured its temporal fluctuations in intensity. Then we used each in the actual optical mapping experiment using isolated, perfused adult mouse heart or chick embryonic heart to determine the actual signal to noise ratio at various acquisition rates. While the LED sources have undergone significant improvements in the recent past, the other alternatives may still surpass them in some parameters, so they may not be the automatic number one choice for every application.
Collapse
Affiliation(s)
| | - D Sedmera
- Developmental Cardiology, Institute of Physiology, Prague, Czech Republic.
| |
Collapse
|
2
|
Olejníčková V, Šaňková B, Sedmera D, Janáček J. Trabecular Architecture Determines Impulse Propagation Through the Early Embryonic Mouse Heart. Front Physiol 2019; 9:1876. [PMID: 30670981 PMCID: PMC6331446 DOI: 10.3389/fphys.2018.01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Most embryonic ventricular cardiomyocytes are quite uniform, in contrast to the adult heart, where the specialized ventricular conduction system is molecularly and functionally distinct from the working myocardium. We thus hypothesized that the preferential conduction pathway within the embryonic ventricle could be dictated by trabecular geometry. Mouse embryonic hearts of the Nkx2.5:eGFP strain between ED9.5 and ED14.5 were cleared and imaged whole mount by confocal microscopy, and reconstructed in 3D at 3.4 μm isotropic voxel size. The local orientation of the trabeculae, responsible for the anisotropic spreading of the signal, was characterized using spatially homogenized tensors (3 × 3 matrices) calculated from the trabecular skeleton. Activation maps were simulated assuming constant speed of spreading along the trabeculae. The results were compared with experimentally obtained epicardial activation maps generated by optical mapping with a voltage-sensitive dye. Simulated impulse propagation starting from the top of interventricular septum revealed the first epicardial breakthrough at the interventricular grove, similar to experimentally obtained activation maps. Likewise, ectopic activation from the left ventricular base perpendicular to dominant trabecular orientation resulted in isotropic and slower impulse spreading on the ventricular surface in both simulated and experimental conditions. We conclude that in the embryonic pre-septation heart, the geometry of the A-V connections and trabecular network is sufficient to explain impulse propagation and ventricular activation patterns.
Collapse
Affiliation(s)
- Veronika Olejníčková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Šaňková
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology of The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Skuhrová K, Kvasilová A, Svatůňková J, Sedmera D. Cardiac Enlargement in the Chick Embryo Induced by Hypothermic Incubation Is Due to a Combination of Hyperplasia and Hypertrophy of Cardiomyocytes. Folia Biol (Praha) 2019; 65:36-42. [PMID: 31171080 DOI: 10.14712/fb2019065010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hypothermic incubation of chicken eggs leads to smaller embryos with enlarged hearts, originally described as hypertrophic. Over the years, however, accumulated evidence suggested that hyperplasia, rather than hypertrophy, is the predominant mechanism of cardiac growth during the prenatal period. We have thus set to re-evaluate the hypothermia model to precise the exact cellular mechanism behind cardiac enlargement. Fertilized chicken eggs were incubated at either 37.5 °C (normothermia) or 33.5 °C from embryonic day (ED) 13 onward (hypothermia). Sampling was performed at ED17, at which point wet embryo and heart weight were recorded, and the hearts were submitted to histological examination. In agreement with previous results, the hypothermic embryos were 29% smaller and had hearts 18% larger, translating into a 67% increase in the heart to body weight ratio (P < 0.05 for all parameters). The cell size was essentially the same between control and hypothermic hearts in all regions analysed. Likewise, there was no significant relationship between the cell size and heart weight; however, in the hypothermic hearts, there was a trend showing positive correlation between cell sizes in different cardiac regions and heart weight. Proliferation rate, determined on the basis of anti-phosphohistone H3 immunofluorescence, showed an overall increase in the hypothermic group, reaching statistical significance (P = 0.02, t-test) in the right ventricle. The proliferation rate was similar among different regions of the same heart. However, the correlation between the proliferation rate and heart weight was only small (r2 = 0.007 and r2 = 0.234 for the normothermic and hypothermic group, respectively). We thus conclude that hyperplasia is the predominant response mechanism in this volume-overload model; mechanistically, decreased heart rate at lower temperature increases the end-diastolic and stroke volume, minimizing the drop in cardiac output through the Frank- Starling mechanism.
Collapse
Affiliation(s)
- K Skuhrová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Kvasilová
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Svatůňková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - D Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Vostarek F, Svatunkova J, Sedmera D. Acute temperature effects on function of the chick embryonic heart. Acta Physiol (Oxf) 2016; 217:276-86. [PMID: 27083765 DOI: 10.1111/apha.12691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 12/01/2022]
Abstract
AIM We analysed the effects of acute temperature change on the beating rate, conduction properties and calcium transients in the chick embryonic heart in vitro and in ovo. METHODS The effects of temperature change (34, 37 and 40 °C) on calcium dynamics in isolated ED4 chick hearts in vitro were investigated by high-speed calcium optical imaging. For comparison and validation of in vitro measurements, experiments were also performed in ovo using videomicroscopy. Artificial stimulation experiments were performed in vitro and in ovo to uncover conduction limits of heart segments. RESULTS Decrease in temperature from 37 to 34 °C in vitro led to a 22% drop in heart rate and unchanged amplitude of Ca(2+) transients, compared to a 25% heart rate decrease in ovo. Increase in temperature from 37 to 40 °C in vitro and in ovo led to 20 and 23% increases in heart rate, respectively, and a significant decrease in amplitude of Ca(2+) transients (atrium -35%, ventricle -38%). We observed a wide spectrum of arrhythmias in vitro, of which the most common was atrioventricular (AV) block (57%). There was variability of AV block locations. Pacing experiments in vitro and in ovo suggested that the AV blocks were likely caused by relative tissue hypoxia and not by the tachycardia itself. CONCLUSION The pacemaker and AV canal are the most temperature-sensitive segments of the embryonic heart. We suggest that the critical point for conduction is the connection of the ventricular trabecular network to the AV canal.
Collapse
Affiliation(s)
- F. Vostarek
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- Faculty of Science; Charles University; Prague Czech Republic
| | - J. Svatunkova
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
| | - D. Sedmera
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- First Faculty of Medicine; Institute of Anatomy; Charles University; Prague Czech Republic
| |
Collapse
|
5
|
Kelder TP, Vicente-Steijn R, Poelmann RE, Mummery CL, DeRuiter MC, Jongbloed MRM. The avian embryo to study development of the cardiac conduction system. Differentiation 2016; 91:90-103. [PMID: 26856662 DOI: 10.1016/j.diff.2016.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
Abstract
The avian embryo has long been a popular model system in developmental biology. The easy accessibility of the embryo makes it particularly suitable for in ovo microsurgery and manipulation. Re-incubation of the embryo allows long-term follow-up of these procedures. The current review focuses on the variety of techniques available to study development of the cardiac conduction system in avian embryos. Based on the large amount of relevant data arising from experiments in avian embryos, we conclude that the avian embryo has and will continue to be a powerful model system to study development in general and the developing cardiac conduction system in particular.
Collapse
Affiliation(s)
- Tim P Kelder
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Rebecca Vicente-Steijn
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands; ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Robert E Poelmann
- Cardiology, Leiden University Medical Center, The Netherlands; Integrative Zoology, Institute Biology, University Leiden, The Netherlands
| | | | - Marco C DeRuiter
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Monique R M Jongbloed
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
6
|
Sedmera D, Kockova R, Vostarek F, Raddatz E. Arrhythmias in the developing heart. Acta Physiol (Oxf) 2015; 213:303-20. [PMID: 25363044 DOI: 10.1111/apha.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/08/2014] [Accepted: 10/23/2014] [Indexed: 01/10/2023]
Abstract
Prevalence of cardiac arrhythmias increases gradually with age; however, specific rhythm disturbances can appear even prior to birth and markedly affect foetal development. Relatively little is known about these disorders, chiefly because of their relative rarity and difficulty in diagnosis. In this review, we cover the most common forms found in human pathology, specifically congenital heart block, pre-excitation, extrasystoles and long QT syndrome. In addition, we cover pertinent literature data from prenatal animal models, providing a glimpse into pathogenesis of arrhythmias and possible strategies for treatment.
Collapse
Affiliation(s)
- D. Sedmera
- Institute of Anatomy; First Faculty of Medicine; Charles University; Prague Czech Republic
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - R. Kockova
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Cardiology; Institute of Clinical and Experimental Medicine; Prague Czech Republic
| | - F. Vostarek
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - E. Raddatz
- Department of Physiology; Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
7
|
Kohl P, Quinn TA. Novel technologies as drivers of progress in cardiac biophysics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:69-70. [PMID: 25193876 DOI: 10.1016/j.pbiomolbio.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Kohl
- National Heart and Lung Institute, Imperial College London, UK; Department of Computer Science, University of Oxford, UK.
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Canada
| |
Collapse
|
8
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Hou Y, Crossman DJ, Rajagopal V, Baddeley D, Jayasinghe I, Soeller C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:328-39. [PMID: 25042577 DOI: 10.1016/j.pbiomolbio.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
A major motivation for the use of super-resolution imaging methods in the investigation of cardiac biophysics has been the insight from biophysical considerations and detailed mathematical modeling that the spatial structure and protein organisation at the scale of nanometres can have enormous implications for calcium signalling in cardiac muscle. We illustrate the use of dSTORM based super-resolution in optically thick (∼10 μm) tissue slices of rat ventricular tissue to visualize proteins at the cardiac Z-disk and compare those images with confocal (diffraction-limited) as well as electron microscopy (EM) data which still provides a benchmark in terms of resolution. α-actinin is an abundant protein target that effectively defines the Z-disk in striated muscle and provides a reference structure for other proteins at the Z-line and the transverse tubules. Using super-resolution imaging α-actinin labelling provides very detailed outlines of the contractile machinery which we have used to study the properties of Z-disks and the distribution of α-actinin itself. We determined the local diameters of the myo-fibrillar and non-myofibrillar space using α-actinin labelling. Comparison between confocal and super-resolution based myofibrillar masks suggested that super-resolution data was able to segment myofibrils accurately while confocal approaches were not always able to distinguish neighbouring myofibrillar bundles which resulted in overestimated diameters. The increased resolution of super-resolution methods provides qualitatively new information to improve our understanding of cardiac biophysics. Nevertheless, conventional diffraction-limited imaging still has an important role to play which we illustrate with correlative confocal and super-resolution data.
Collapse
Affiliation(s)
- Yufeng Hou
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Vijay Rajagopal
- Dept. of Electrical and Electronic Engineering, University of Melbourne, Australia
| | - David Baddeley
- Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Cell Biology, Yale University, New Haven, USA
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand; Biomedical Physics, University of Exeter, UK.
| |
Collapse
|