1
|
Majumdar C, Demir M, Merrill SR, Hashemian M, David SS. FSHing for DNA Damage: Key Features of MutY Detection of 8-Oxoguanine:Adenine Mismatches. Acc Chem Res 2024; 57:1019-1031. [PMID: 38471078 PMCID: PMC10993402 DOI: 10.1021/acs.accounts.3c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Base excision repair (BER) enzymes are genomic superheroes that stealthily and accurately identify and remove chemically modified DNA bases. DNA base modifications erode the informational content of DNA and underlie many disease phenotypes, most conspicuously, cancer. The "OG" of oxidative base damage, 8-oxo-7,8-dihydroguanine (OG), is particularly insidious due to its miscoding ability that leads to the formation of rare, pro-mutagenic OG:A mismatches. Thwarting mutagenesis relies on the capture of OG:A mismatches prior to DNA replication and removal of the mis-inserted adenine by MutY glycosylases to initiate BER. The threat of OG and the importance of its repair are underscored by the association between inherited dysfunctional variants of the MutY human homologue (MUTYH) and colorectal cancer, known as MUTYH-associated polyposis (MAP). Our functional studies of the two founder MUTYH variants revealed that both have compromised activity and a reduced affinity for OG:A mismatches. Indeed, these studies underscored the challenge of the recognition of OG:A mismatches that are only subtly structurally different than T:A base pairs. Since the original discovery of MAP, many MUTYH variants have been reported, with most considered to be "variants of uncertain significance." To reveal features associated with damage recognition and adenine excision by MutY and MUTYH, we have developed a multipronged chemical biology approach combining enzyme kinetics, X-ray crystallography, single-molecule visualization, and cellular repair assays. In this review, we highlight recent work in our laboratory where we defined MutY structure-activity relationship (SAR) studies using synthetic analogs of OG and A in cellular and in vitro assays. Our studies revealed the 2-amino group of OG as the key distinguishing feature of OG:A mismatches. Indeed, the unique position of the 2-amino group in the major groove of OGsyn:Aanti mismatches provides a means for its rapid detection among a large excess of highly abundant and structurally similar canonical base pairs. Furthermore, site-directed mutagenesis and structural analysis showed that a conserved C-terminal domain β-hairpin "FSH'' loop is critical for OG recognition with the "His" serving as the lesion detector. Notably, MUTYH variants located within and near the FSH loop have been associated with different forms of cancer. Uncovering the role(s) of this loop in lesion recognition provided a detailed understanding of the search and repair process of MutY. Such insights are also useful to identify mutational hotspots and pathogenic variants, which may improve the ability of physicians to diagnose the likelihood of disease onset and prognosis. The critical importance of the "FSH" loop in lesion detection suggests that it may serve as a unique locus for targeting probes or inhibitors of MutY/MUTYH to provide new chemical biology tools and avenues for therapeutic development.
Collapse
Affiliation(s)
- Chandrima Majumdar
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Merve Demir
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Steven R. Merrill
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Mohammad Hashemian
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University
of California, Davis, California 95616, United States
| |
Collapse
|
2
|
Li C, Liu J, Wei Z, Cheng Y, Shen Z, Xin Z, Huang Y, Wang H, Li Y, Mu Z, Zhang Q. Exogenous melatonin enhances the tolerance of tiger nut (Cyperus esculentus L.) via DNA damage repair pathway under heavy metal stress (Cd 2+) at the sprout stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115519. [PMID: 37769580 DOI: 10.1016/j.ecoenv.2023.115519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 μmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.
Collapse
Affiliation(s)
- Caihua Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiayao Liu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yan Cheng
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zihao Shen
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuo Xin
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudi Huang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongda Wang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuhuan Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Qi Zhang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
3
|
Zeitler L, Denby Wilkes C, Goldar A, Soutourina J. A quantitative modelling approach for DNA repair on a population scale. PLoS Comput Biol 2022; 18:e1010488. [PMID: 36094963 PMCID: PMC9499311 DOI: 10.1371/journal.pcbi.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The great advances of sequencing technologies allow the in vivo measurement of nuclear processes-such as DNA repair after UV exposure-over entire cell populations. However, data sets usually contain only a few samples over several hours, missing possibly important information in between time points. We developed a data-driven approach to analyse CPD repair kinetics over time in Saccharomyces cerevisiae. In contrast to other studies that consider sequencing signals as an average behaviour, we understand them as the superposition of signals from independent cells. By motivating repair as a stochastic process, we derive a minimal model for which the parameters can be conveniently estimated. We correlate repair parameters to a variety of genomic features that are assumed to influence repair, including transcription rate and nucleosome density. The clearest link was found for the transcription unit length, which has been unreported for budding yeast to our knowledge. The framework hence allows a comprehensive analysis of nuclear processes on a population scale.
Collapse
Affiliation(s)
- Leo Zeitler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cyril Denby Wilkes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Julie Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
4
|
Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proc Natl Acad Sci U S A 2022; 119:e2116218119. [PMID: 35259021 PMCID: PMC8931253 DOI: 10.1073/pnas.2116218119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT. The O6-alkylguanine DNA alkyltransferase (AGT) is an important DNA repair protein. AGT repairs highly mutagenic and cytotoxic alkylguanine lesions that result from metabolic products but are also deliberately introduced during chemotherapy, making a better understanding of the working mechanism of AGT essential. To investigate lesion interactions by AGT, we present a protocol to insert a single alkylguanine lesion at a well-defined position in long DNA substrates for single-molecule fluorescence microscopy coupled with dual-trap optical tweezers. Our studies address the longstanding enigma in the field of how monomeric AGT complexes at alkyl lesions seen in crystal structures can be reconciled with AGT clusters on DNA at high protein concentrations that have been observed from atomic force microscopy (AFM) and biochemical studies. A role of AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Interestingly, a possible role of these clusters is indicated by preferential cluster formation at alkyl lesions in our studies. From our data, we derive a model for the lesion search and repair mechanism of AGT.
Collapse
|
5
|
Schaich MA, Van Houten B. Searching for DNA Damage: Insights From Single Molecule Analysis. Front Mol Biosci 2021; 8:772877. [PMID: 34805281 PMCID: PMC8602339 DOI: 10.3389/fmolb.2021.772877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/26/2023] Open
Abstract
DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.
Collapse
Affiliation(s)
- Matthew A. Schaich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Mercado-Vásquez G, Boyer D. First hitting times between a run-and-tumble particle and a stochastically gated target. Phys Rev E 2021; 103:042139. [PMID: 34005900 DOI: 10.1103/physreve.103.042139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
We study the statistics of the first hitting time between a one-dimensional run-and-tumble particle and a target site that switches intermittently between visible and invisible phases. The two-state dynamics of the target is independent of the motion of the particle, which can be absorbed by the target only in its visible phase. We obtain the mean first hitting time when the motion takes place in a finite domain with reflecting boundaries. Considering the turning rate of the particle as a tuning parameter, we find that ballistic motion represents the best strategy to minimize the mean first hitting time. However, the relative fluctuations of the first hitting time are large and exhibit nonmonotonous behaviors with respect to the turning rate or the target transition rates. Paradoxically, these fluctuations can be the largest for targets that are visible most of the time, and not for those that are mostly invisible or rapidly transiting between the two states. On the infinite line, the classical asymptotic behavior ∝t^{-3/2} of the first hitting time distribution is typically preceded, due to target intermittency, by an intermediate scaling regime varying as t^{-1/2}. The extent of this transient regime becomes very long when the target is most of the time invisible, especially at low turning rates. In both finite and infinite geometries, we draw analogies with partial absorption problems.
Collapse
Affiliation(s)
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Kong M, Beckwitt EC, Van Houten B. Dynamic action of DNA repair proteins as revealed by single molecule techniques: Seeing is believing. DNA Repair (Amst) 2020; 93:102909. [PMID: 33087275 DOI: 10.1016/j.dnarep.2020.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA repair is a highly dynamic process in which the actual damage recognition process occurs through an amazing dance between the DNA duplex containing the lesion and the DNA repair proteins. Single molecule investigations have revealed that DNA repair proteins solve the speed-stability paradox, of rapid search versus stable complex formation, by conformational changes induced in both the damaged DNA and the repair proteins. Using Rad4, XPA, PARP1, APE1, OGG1 and UV-DDB as examples, we have discovered how these repair proteins limit their travel on DNA, once a lesion is encountered through a process of anomalous diffusion. We have also observed how PARP1 and APE1, as well as UV-DDB and OGG1 or APE1, co-localize dynamically at sites near DNA damage. This review highlights how our group has greatly benefited from our productive collaborations with Sam Wilson's research group.
Collapse
Affiliation(s)
- Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emily C Beckwitt
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Saxton MJ. Diffusion of DNA-Binding Species in the Nucleus: A Transient Anomalous Subdiffusion Model. Biophys J 2020; 118:2151-2167. [PMID: 32294478 PMCID: PMC7203007 DOI: 10.1016/j.bpj.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Single-particle tracking experiments have measured escape times of DNA-binding species diffusing in living cells: CRISPR-Cas9, TetR, and LacI. The observed distribution is a truncated power law. Working backward from the experimental results, the observed distribution appears inconsistent with a Gaussian distribution of binding energies. Working forward, the observed distribution leads to transient anomalous subdiffusion, in which diffusion is anomalous at short times and normal at long times, here only mildly anomalous. Monte Carlo simulations are used to characterize the time-dependent diffusion coefficient D(t) in terms of the anomalous exponent α, the crossover time tcross, and the limits D(0) and D(∞) and to relate these quantities to the escape time distribution. The simplest interpretations identify the escape time as the actual binding time to DNA or the period of one-dimensional diffusion on DNA in the standard model combining one-dimensional and three-dimensional search, but a more complicated interpretation may be required. The model has several implications for cell biophysics. 1) The initial anomalous regime represents the search of the DNA-binding species for its target DNA sequence. 2) Non-target DNA sites have a significant effect on search kinetics. False positives in bioinformatic searches of the genome are potentially rate-determining in vivo. For simple binding, the search would be speeded if false-positive sequences were eliminated from the genome. 3) Both binding and obstruction affect diffusion. Obstruction ought to be measured directly, using as the primary probe the DNA-binding species with the binding site inactivated and eGFP as a calibration standard among laboratories and cell types. 4) Overexpression of the DNA-binding species reduces anomalous subdiffusion because the deepest binding sites are occupied and unavailable. 5) The model provides a coarse-grained phenomenological description of diffusion of a DNA-binding species, useful in larger-scale modeling of kinetics, FCS, and FRAP.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California.
| |
Collapse
|
9
|
Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, Kwon Y, Morten MJ, Mukherjee S, Pambos OJ, El Sayyed H, Thrall ES, Vieira-da-Rocha JP, Wang Q, Wang S, Yeh HY, Biteen JS, Chi P, Heyer WD, Kapanidis AN, Loparo JJ, Strick TR, Sung P, Van Houten B, Niu H, Rothenberg E. Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes. MICROBIAL CELL 2019; 6:65-101. [PMID: 30652106 PMCID: PMC6334232 DOI: 10.15698/mic2019.01.665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L Klein
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| | - Kenny K H Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | - Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Yi-Hsuan Chang
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Michael J Morten
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| | - Sucheta Mukherjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Elizabeth S Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - João P Vieira-da-Rocha
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Shuang Wang
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France.,Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Julie S Biteen
- Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.,Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Terence R Strick
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France.,Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France.,Programme Equipe Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eli Rothenberg
- New York University School of Medicine, Department of Biochemistry and Molecular Pharmacology, New York, NY 10016, USA
| |
Collapse
|
10
|
Goychuk I. Viscoelastic subdiffusion in a random Gaussian environment. Phys Chem Chem Phys 2018; 20:24140-24155. [PMID: 30206605 DOI: 10.1039/c8cp05238g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Hu M, Bao JD. Diffusion crossing over a barrier in a random rough metastable potential. Phys Rev E 2018; 97:062143. [PMID: 30011451 DOI: 10.1103/physreve.97.062143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 06/08/2023]
Abstract
We carry out a detailed study of escape dynamics of a particle driven by a white noise over a metastable potential corrugated by spatial disorder in the form of zero-mean random correlated potential. The approach of double-averaging over test particles and statistic ensemble is proposed to calculate the escape rate in a finite-size random rough metastable potential, moreover, the interference mechanism of test particles multi-passing over the saddle point is considered. Through analyzing the dependence of the steady escape rate on various modelled potentials and parameters, we demonstrate that the obstruction induced by roughness leads to a decrease in the steady escape rate with the increase of rough intensity. We also add the random correlated potential into the vicinity of the saddle-point of metastable potentials of three kinds and show an enhancement phenomenon of escape rate similar to the previous study of a surmounting fluctuating sharp barrier.
Collapse
Affiliation(s)
- Meng Hu
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
12
|
Liu L, Kong M, Gassman NR, Freudenthal BD, Prasad R, Zhen S, Watkins SC, Wilson SH, Van Houten B. PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Nucleic Acids Res 2018; 45:12834-12847. [PMID: 29121337 PMCID: PMC5728402 DOI: 10.1093/nar/gkx1047] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
PARP1-dependent poly-ADP-ribosylation (PARylation) participates in the repair of many forms of DNA damage. Here, we used atomic force microscopy (AFM) and single molecule fluorescence microscopy to examine the interactions of PARP1 with common DNA repair intermediates. AFM volume analysis indicates that PARP1 binds to DNA at nicks, abasic (AP) sites, and ends as a monomer. Single molecule DNA tightrope assays were used to follow the real-time dynamic behavior of PARP1 in the absence and presence of AP endonuclease (APE1) on AP DNA damage arrays. These experiments revealed that PARP1 conducted damage search mostly through 3D diffusion. Co-localization of APE1 with PARP1 on DNA was found capable of inducing 1D diffusion of otherwise nonmotile PARP1, while excess APE1 also facilitated the dissociation of DNA-bound PARP1. Moreover, auto-PARylation of PARP1 allowed the protein to switch its damage search strategy by causing a 3-fold increase in linear diffusion. Finally, we demonstrated that PARP inhibitor olaparib did not significantly alter the rate of PARP1 dissociation from DNA, but instead resulted in more motility of DNA-bound PARP1 molecules.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Natalie R Gassman
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Bret D Freudenthal
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Rajendra Prasad
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Stephanie Zhen
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samuel H Wilson
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Kar P, Cherstvy AG, Metzler R. Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation. Phys Chem Chem Phys 2018; 20:7931-7946. [DOI: 10.1039/c7cp06922g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. We here uncover the implications of colocalisation of protein production and DNA binding sites via computer simulations.
Collapse
Affiliation(s)
- Prathitha Kar
- Dept of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bengaluru
- India
- Institute for Physics & Astronomy
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
14
|
Third EU-US workshop on “Nucleotide excision repair and crosslink repair—From molecules to mankind”, Smolenice Castle, Slovak Republic, May 7th–11th 2017. DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Tainer JA. Uncovering the secrets of protein interactions with the DNA enforcing genomic stability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:89-92. [PMID: 28709479 DOI: 10.1016/j.pbiomolbio.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd., Houston, TX 77030, United States; SIBYLS, Advanced Light Source, Lawrence Berkeley National Lab, United States. http://bl1231.als.lbl.gov
| |
Collapse
|
16
|
Kong M, Beckwitt EC, Springall L, Kad NM, Van Houten B. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time. Methods Enzymol 2017; 592:213-257. [PMID: 28668122 DOI: 10.1016/bs.mie.2017.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair.
Collapse
Affiliation(s)
- Muwen Kong
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Emily C Beckwitt
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Luke Springall
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Bennett Van Houten
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|