1
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Karantas ID, Okur ME, Okur NÜ, Siafaka PI. Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives. Endocr Metab Immune Disord Drug Targets 2021; 21:815-834. [PMID: 32778041 DOI: 10.2174/1871530320666200810144004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world and dyslipidemia is one of the major risk factors. The current therapeutic strategies for cardiovascular diseases involve the management of risk factors, especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging, and treatment. In this targeted literature review, the researchers presented the most recent evidence on dyslipidemia management by including the current therapeutic goals for it. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, i.e., by adopting a healthy life, and choosing the most suitable medication. This review can help medical professionals as well as specialists of other sciences to update their knowledge on dyslipidemia management, which can lead to better therapeutic outcomes and newer drug developments.
Collapse
Affiliation(s)
| | - Mehmet E Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
3
|
Josefs T, Basu D, Vaisar T, Arets B, Kanter JE, Huggins LA, Hu Y, Liu J, Clouet-Foraison N, Heinecke JW, Bornfeldt KE, Goldberg IJ, Fisher EA. Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circ Res 2021; 128:690-705. [PMID: 33530703 DOI: 10.1161/circresaha.120.317458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tatjana Josefs
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | | | - Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Jianhua Liu
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| | - Noemie Clouet-Foraison
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Edward A Fisher
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| |
Collapse
|
4
|
Associations of HDL Subspecies Defined by ApoC3 with Non-Alcoholic Fatty Liver Disease: The Multi-Ethnic Study of Atherosclerosis. J Clin Med 2020; 9:jcm9113522. [PMID: 33142714 PMCID: PMC7693421 DOI: 10.3390/jcm9113522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, we reported that inverse associations of high-density lipoprotein (HDL) with cardiovascular disease and diabetes were only observed for HDL that lacked the pro-inflammatory protein apolipoprotein C3 (apoC3). To provide further insight into the cardiometabolic properties of HDL subspecies defined by the presence or absence of apoC3, we aimed to examine these subspecies with liver fat content and non-alcoholic fatty liver disease (NAFLD). We investigated cross-sectional associations between ELISA-measured plasma levels of apoA1 in HDL that contained or lacked apoC3 and computed tomography-determined liver fat content and NAFLD (<51 HU) at baseline (2000–2002) among 5007 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) without heavy alcohol consumption (>14 drinks/week in men and >7 drinks/week in women). In multivariable-adjusted regression models, apoA1 in HDL that contained or lacked apoC3 was differentially associated with liver fat content (Pheterogeneity = 0.048). While apoA1 in HDL that lacked apoC3 was inversely associated with liver fat content (Ptrend < 0.0001), apoA1 in HDL that contained apoC3 was not statistically significantly associated with liver fat content (Ptrend = 0.57). Higher apoA1 in HDL that lacked apoC3 was related to a lower prevalence of NAFLD (OR per SD: 0.80; 95% CI: 0.72, 0.89), whereas no association was found for apoA1 in HDL that contained apoC3 (OR per SD: 0.95; 95% CI: 0.85, 1.05; Pheterogeneity = 0.09). Higher apoA1 in HDL that lacked apoC3 was associated with less liver fat content and a lower prevalence of NAFLD. This finding extends the inverse association of HDL lacking apoC3 from cardiovascular disease to NAFLD. Lack of biopsy-proven hepatic steatosis and fibrosis data requires the replication of our study in further studies.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To discuss the recent developments in structure, function and physiology of lipoprotein lipase (LpL) and the regulators of LpL, which are being targeted for therapy. RECENT FINDINGS Recent studies have revealed the long elusive crystal structure of LpL and its interaction with glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1). New light has been shed on LpL being active as a monomer, which brings into questions previous thinking that LpL inhibitors like angiopoietin-like 4 (ANGPTL4) and stabilizers like LMF1 work on disrupting or maintaining LpL in dimer form. There is increasing pharmaceutical interest in developing targets to block LpL inhibitors like ANGPTL3. Other approaches to reducing circulating triglyceride levels have been using an apoC2 mimetic and reducing apoC3. SUMMARY Lipolysis of triglyceride-rich lipoproteins by LpL is a central event in lipid metabolism, releasing fatty acids for uptake by tissues and generating low-density lipoprotein and expanding high-density lipoprotein. Recent mechanistic insights into the structure and function of LpL have added to our understanding of triglyceride metabolism. This has also led to heightened interest in targeting its posttranslational regulators, which can be the next generation of lipid-lowering agents used to prevent hypertriglyceridemic pancreatitis and, hopefully, cardiovascular disease.
Collapse
Affiliation(s)
- Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | | |
Collapse
|
6
|
Rosenzweig JL, Bakris GL, Berglund LF, Hivert MF, Horton ES, Kalyani RR, Murad MH, Vergès BL. Primary Prevention of ASCVD and T2DM in Patients at Metabolic Risk: An Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 2019; 104:3939-3985. [PMID: 31365087 DOI: 10.1210/jc.2019-01338] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To develop clinical practice guidelines for the primary prevention of atherosclerotic cardiovascular disease (ASCVD) and type 2 diabetes mellitus (T2DM) in individuals at metabolic risk for developing these conditions. CONCLUSIONS Health care providers should incorporate regular screening and identification of individuals at metabolic risk (at higher risk for ASCVD and T2DM) with measurement of blood pressure, waist circumference, fasting lipid profile, and blood glucose. Individuals identified at metabolic risk should undergo 10-year global risk assessment for ASCVD or coronary heart disease to determine targets of therapy for reduction of apolipoprotein B-containing lipoproteins. Hypertension should be treated to targets outlined in this guideline. Individuals with prediabetes should be tested at least annually for progression to diabetes and referred to intensive diet and physical activity behavioral counseling programs. For the primary prevention of ASCVD and T2DM, the Writing Committee recommends lifestyle management be the first priority. Behavioral programs should include a heart-healthy dietary pattern and sodium restriction, as well as an active lifestyle with daily walking, limited sedentary time, and a structured program of physical activity, if appropriate. Individuals with excess weight should aim for loss of ≥5% of initial body weight in the first year. Behavior changes should be supported by a comprehensive program led by trained interventionists and reinforced by primary care providers. Pharmacological and medical therapy can be used in addition to lifestyle modification when recommended goals are not achieved.
Collapse
Affiliation(s)
| | | | | | - Marie-France Hivert
- Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Rita R Kalyani
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Evidence-Based Practice Center, Mayo Clinic, Rochester, Minnesota
| | - Bruno L Vergès
- Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| |
Collapse
|
7
|
Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, Di Prospero NA, Eckel RH, Goldberg IJ. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arterioscler Thromb Vasc Biol 2019; 38:2207-2216. [PMID: 30354257 DOI: 10.1161/atvbaha.118.311339] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective- SGLT2 (sodium-glucose cotransporter 2) inhibition in humans leads to increased levels of LDL (low-density lipoprotein) cholesterol and decreased levels of plasma triglyceride. Recent studies, however, have shown this therapy to lower cardiovascular mortality. In this study, we aimed to determine how SGLT2 inhibition alters circulating lipoproteins. Approach and Results- We used a mouse model expressing human CETP (cholesteryl ester transfer protein) and human ApoB100 (apolipoprotein B100) to determine how SGLT2 inhibition alters plasma lipoprotein metabolism. The mice were fed a high-fat diet and then were made partially insulin deficient using streptozotocin. SGLT2 was inhibited using a specific antisense oligonucleotide or canagliflozin, a clinically available oral SGLT2 inhibitor. Inhibition of SGLT2 increased circulating levels of LDL cholesterol and reduced plasma triglyceride levels. SGLT2 inhibition was associated with increased LpL (lipoprotein lipase) activity in the postheparin plasma, decreased postprandial lipemia, and faster clearance of radiolabeled VLDL (very-LDL) from circulation. Additionally, SGLT2 inhibition delayed turnover of labeled LDL from circulation. Conclusions- Our studies in diabetic CETP-ApoB100 transgenic mice recapitulate many of the changes in circulating lipids found with SGLT2 inhibition therapy in humans and suggest that the increased LDL cholesterol found with this therapy is because of reduced clearance of LDL from the circulation and greater lipolysis of triglyceride-rich lipoproteins. Most prominent effects of SGLT2 inhibition in the current mouse model were seen with antisense oligonucleotides-mediated knockdown of SGLT2.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Lesley-Ann Huggins
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Diego Scerbo
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Joseph Obunike
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA (A.E.M.)
| | - Paul L Rothenberg
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Nicholas A Di Prospero
- Cardiovascular and Metabolism Clinical Development, Janssen Research & Development, LLC, Raritan, NJ (P.L.R., N.A.D.P.)
| | - Robert H Eckel
- Division of Endocrinology, University of Colorado, Anschutz Campus, Denver (R.H.E.)
| | - Ira J Goldberg
- From the Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine (D.B., L.-A.H., D.S., J.O., I.J.G.)
| |
Collapse
|
8
|
Zhao L, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull 2018. [PMID: 29534172 DOI: 10.1093/bmb/ldy006] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND CD36 is a multi-functional class B scavenger receptor, which acts as an important modulator of lipid homeostasis and immune responses. SOURCES OF DATA This review uses academic articles. AREAS OF AGREEMENT CD36 is closely related to the development and progression of atherosclerosis. AREAS OF CONTROVERSY Both persistent up-regulation of CD36 and deficiency of CD36 increase the risk for atherosclerosis. Abnormally up-regulated CD36 promotes inflammation, foam cell formation, endothelial apoptosis, macrophage trapping and thrombosis. However, CD36 deficiency also causes dyslipidemia, subclinical inflammation and metabolic disorders, which are established risk factors for atherosclerosis. GROWING POINTS There may be an 'optimal protective window' of CD36 expression. AREAS TIMELY FOR DEVELOPING RESEARCH In addition to traditionally modulating protein functions using gene overexpression or deficiency, the modulation of CD36 function at post-translational levels has recently been suggested to be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Z Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| | - J F Moorhead
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, UK
| |
Collapse
|
9
|
Nägga K, Gustavsson AM, Stomrud E, Lindqvist D, van Westen D, Blennow K, Zetterberg H, Melander O, Hansson O. Increased midlife triglycerides predict brain β-amyloid and tau pathology 20 years later. Neurology 2017; 90:e73-e81. [PMID: 29196581 PMCID: PMC5754649 DOI: 10.1212/wnl.0000000000004749] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To evaluate the effect of midlife lipid levels on Alzheimer brain pathology 20 years later in cognitively normal elderly individuals. METHODS This is a longitudinal cohort study of 318 cognitively normal individuals with data on fasting lipid levels at midlife (mean age 54 years). Presence of β-amyloid (Aβ) and tau pathologies 20 years later (mean age 73 years) were detected by quantifying Alzheimer disease (AD) biomarkers in CSF. In a subset (n = 134), Aβ (18F-flutemetamol) PET was also performed. RESULTS CSF Aβ42 and Aβ PET revealed Aβ pathology in approximately 20% of the cognitively healthy population and CSF Aβ42/phosphorylated tau (p-tau) ratio indicated both Aβ and tau pathology in 16%. Higher levels of triglycerides in midlife were independently associated with abnormal CSF Aβ42 (odds ratio [OR] 1.34, 95% confidence interval [CI] 1.03-1.75, p = 0.029) and abnormal Aβ42/p-tau ratio (OR 1.46, 95% CI 1.10-1.93; p = 0.009) adjusting for age, sex, APOE ε4, education, and multiple vascular risk factors. Triglycerides were also associated with abnormal Aβ PET in multivariable regression models, but the association was attenuated in the fully adjusted model. Increased levels of medium and large low-density lipoprotein subfractions were significantly associated with abnormal Aβ PET and large high-density lipoprotein particles were associated with decreased risk of abnormal Aβ PET. CONCLUSIONS Increased levels of triglycerides at midlife predict brain Aβ and tau pathology 20 years later in cognitively healthy individuals. Certain lipoprotein subfractions may also be risk factors for Aβ pathology. These findings further support an involvement of lipids in the very early stages of AD development.
Collapse
Affiliation(s)
- Katarina Nägga
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK.
| | - Anna-Märta Gustavsson
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Erik Stomrud
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Daniel Lindqvist
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Danielle van Westen
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Henrik Zetterberg
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Olle Melander
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK
| | - Oskar Hansson
- From the Clinical Memory Research Unit (K.N., A.-M.G., E.S., O.H.) and Clinical Research Centre (O.M.), Department of Clinical Sciences Malmö, Lund University; Memory Clinic (K.N., A.-M.G., E.S., O.H.), Skåne University Hospital, Malmö; Psychiatry (D.L.) and Diagnostic Radiology (D.v.W.), Department of Clinical Sciences Lund, Lund University; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
10
|
Gorshkova IN, Atkinson D. Increased Binding of Apolipoproteins A-I and E4 to Triglyceride-Rich Lipoproteins is linked to Induction of Hypertriglyceridemia. JSM ATHEROSCLEROSIS 2017; 2:1026. [PMID: 28597004 PMCID: PMC5460632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypertriglyceridemia (HTG) is an independent factor of atherosclerotic cardiovascular disease and a hallmark of many metabolic disorders. However, the molecular etiology of HTG is still largely unknown. In mice, severe HTG may be induced by expression of specific mutants of apolipoprotein (apo) A-I or wild type (WT) apoE4. Expression of a certain apoE4 mutant results in mild HTG, while expression of another apoE4 mutant or WT apoA-I results in normal plasma triglyceride (TG) levels. Biophysical studies of the apoA-I and apoE4 forms associated with HTG help better understand the molecular mechanisms of induction of HTG by these proteins. The studies show that the apoA-I and apoE4 forms that induce HTG have a destabilized and more loosely folded conformation in solution than their counterparts not associated with HTG. Disruption of the protein salt bridge networks by the mutations is likely responsible for the observed structural changes. Each apoA-I and apoE4 form that induced HTG show enhanced binding to model TG-rich particles. HTG appeared to positively correlate with the apolipoprotein ability to bind to TG-rich particles. This implies that in vivo, the conformational changes in the apolipoproteins that induce HTG facilitate their binding to plasma TG-rich lipoproteins. We discuss metabolic pathways leading to the development of HTG that may result from enhanced binding of the apolipoproteins to TG-rich lipoproteins in circulation. While various factors may be involved in the development of HTG in humans, it is possible that structural alterations that increase affinity of apolipoproteins to TG-rich lipoproteins may contribute to some cases of this disorder.
Collapse
Affiliation(s)
- Irina N. Gorshkova
- Corresponding author: Irina N. Gorshkova, Department
of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street,
Boston, Massachusetts 02118, USA, Tel: 1-617-638-4207;
| | | |
Collapse
|