1
|
Salazar JW, Morin DP. Atrial fibrillation in patients with cardiomyopathy - Protecting the vulnerable. Trends Cardiovasc Med 2025:S1050-1738(25)00032-5. [PMID: 40081433 DOI: 10.1016/j.tcm.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Affiliation(s)
- James W Salazar
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, United States
| | - Daniel P Morin
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
2
|
Li L, Lu Y, Du Z, Fang M, Wei Y, Zhang W, Xu Y, Sun J, Zeng X, Hu G, Wang L, Jiang Y, Liu S, Tang Y, Yu H, Tu P, Guo X. Integrated untargeted/targeted metabolomics identifies a putative oxylipin signature in patients with atrial fibrillation and coronary heart disease. J Transl Int Med 2024; 12:495-509. [PMID: 39513034 PMCID: PMC11538890 DOI: 10.1515/jtim-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background and Objective Atrial fibrillation (AF) and coronary heart disease (CHD) are closely related to metabolic dysregulation. However, the metabolic characteristics of AF patients with concomitant CHD remain unclear. The aims of this study were to elucidate the metabolic profiles of patients with AF and CHD to seek new therapeutic targets and related factors of AF combined with CHD. Methods Untargeted metabolomics and targeted oxylipins profiling were performed to characterize the serum metabolome landscape of patients with AF, CHD, and AF comorbid CHD. Results The serum metabolic fingerprints of patients with AF comorbid CHD were significantly differentiated from normal controls (NC) and individuals with AF or CHD alone, and the differentiated metabolites dominated by a variety of lipid alterations in the phospholipid and fatty acid metabolism. Furthermore, the targeted profiles of oxylipins demonstrated that the levels of arachidonic acid derivatives including prostaglandins, leukotrienes, hydroxy-docosahexaenoic acids, hydroxy-eicostetraenoic acids and hydroxy-eicosatrienoic acids in patients with AF and CHD were significantly different from those in the NC, AF, and CHD groups. Several prostaglandins were positively associated with echocardiographic indicators of myocardial remodeling. Conclusions This study updates metabolic insights of AF and CHD and provides potential therapeutic targets for preventing or treating AF comorbid CHD.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Zhiyong Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing100029, China
| | - Meng Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Ying Wei
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Wenxin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Yisheng Xu
- Waters Technologies Ltd., Beijing102600, China
| | - Jiaxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Xiangrui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Guomin Hu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Lingli Wang
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Shuwang Liu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Yida Tang
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| |
Collapse
|
3
|
Li Z, Liu Q, Zhou S, Xiao Y. Enhancing myocardial function with cardiac contractility modulation: potential and challenges. ESC Heart Fail 2024; 11:1-12. [PMID: 37947013 PMCID: PMC10804199 DOI: 10.1002/ehf2.14575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cardiac contractility modulation (CCM) offers a novel therapeutic avenue for heart failure patients, particularly those unresponsive to cardiac resynchronization therapy within specific QRS duration ranges. This review elucidates CCM's mechanistic underpinnings, its impact on myocardial function, and utility across patient demographics. However, CCM is limited by insufficient data on mortality and hospitalization rate reductions, as well as the need for specialized device implantation skills. While prevailing research has concentrated on left ventricular effects, a knowledge gap persists for other patient subsets. Future inquiries should address combinatory treatment strategies, extended usage and the impact of atrial fibrillation on device implantation. Such expanded studies could refine therapeutic outcomes and widen the scope of beneficiaries.
Collapse
Affiliation(s)
- Zihan Li
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|