1
|
Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W. China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer. Signal Transduct Target Ther 2025; 10:175. [PMID: 40425545 PMCID: PMC12117065 DOI: 10.1038/s41392-025-02256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Bojiang Chen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Liuqing Yang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Pengwei Ren
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
2
|
Dan A, Burtavel LM, Coman MC, Focsa IO, Duta-Ion S, Juganaru IR, Zaruha AG, Codreanu PC, Strugari IM, Hotinceanu IA, Bohiltea LC, Radoi VE. Genetic Blueprints in Lung Cancer: Foundations for Targeted Therapies. Cancers (Basel) 2024; 16:4048. [PMID: 39682234 DOI: 10.3390/cancers16234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Lung cancer, a malignant neoplasm originating from the epithelial cells of the lung, is characterized by its aggressive growth and poor prognosis, making it a leading cause of cancer-related mortality globally [...].
Collapse
Affiliation(s)
- Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia-Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin-Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina-Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra-Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia-Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Irina-Maria Strugari
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian-Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu-Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
3
|
Iurca I, Isakescu E, Pop LA, Budisan L, Pirlog R, Harangus A, Ciuleanu TE, Braicu C, Berindan-Neagoe I. Next-generation sequencing as a valuable tool for mutational spectrum in advanced-stage NSCLC patients. Med Pharm Rep 2024; 97:298-307. [PMID: 39234458 PMCID: PMC11370849 DOI: 10.15386/mpr-2763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background and aim Lung cancer remains one of the most threatening malignancies, ranking as the second most diagnosed cancer, and it continues to be the leading cause of cancer-related deaths worldwide. Challenges persist with late diagnosis and the high mutational burden characteristic of lung cancer. Methods Our study focuses on identifying the mutational spectrum of a cohort of advanced-stage non-small cell lung cancer (NSCLC) patients using a minimally invasive method through blood collection. To analyze the mutational landscape of these patients, we employed plasma DNA for the next-generation sequencing (NGS) cancer panel Ion Torrent, which contains 50 of the most mutated genes in lung cancer. All protocols for extraction, quality and quantity control, and library preparation follow the manufacturer's rules. Bioinformatics analysis was performed to select pathogenic mutations versus non-pathogenic-benign ones. Results This approach is particularly valuable for patients in advanced stages (III and IV, n=10) of lung adenocarcinoma and lung squamous cell carcinoma, who lack surgical options and limited therapeutic avenues. The comprehensive sequencing analysis revealed that nine of the ten lung cancer patients carried a TP53 mutation. Also, several other mutations exist in various cases, showing heterogeneous profiling. Conclusions Our findings demonstrate the potential of liquid biopsies in providing crucial genetic insights that can guide personalized treatment strategies, improving the management and outcomes for patients with advanced lung cancer.
Collapse
Affiliation(s)
- Ioana Iurca
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- County Hospital Baia-Mare, Baia -Mare, Romania
| | - Ecaterina Isakescu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Song L, Wu D, Wu J, Zhang J, Li W, Wang C. Investigating causal associations between pneumonia and lung cancer using a bidirectional mendelian randomization framework. BMC Cancer 2024; 24:721. [PMID: 38862880 PMCID: PMC11167773 DOI: 10.1186/s12885-024-12147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/19/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Pneumonia and lung cancer are both major respiratory diseases, and observational studies have explored the association between their susceptibility. However, due to the presence of potential confounders and reverse causality, the comprehensive causal relationships between pneumonia and lung cancer require further exploration. METHODS Genome-wide association study (GWAS) summary-level data were obtained from the hitherto latest FinnGen database, COVID-19 Host Genetics Initiative resource, and International Lung Cancer Consortium. We implemented a bidirectional Mendelian randomization (MR) framework to evaluate the causal relationships between several specific types of pneumonia and lung cancer. The causal estimates were mainly calculated by inverse-variance weighted (IVW) approach. Additionally, sensitivity analyses were also conducted to validate the robustness of the causalty. RESULTS In the MR analyses, overall pneumonia demonstrated a suggestive but modest association with overall lung cancer risk (Odds ratio [OR]: 1.21, 95% confidence interval [CI]: 1.01 - 1.44, P = 0.037). The correlations between specific pneumonia types and overall lung cancer were not as significant, including bacterial pneumonia (OR: 1.07, 95% CI: 0.91 - 1.26, P = 0.386), viral pneumonia (OR: 1.00, 95% CI: 0.95 - 1.06, P = 0.891), asthma-related pneumonia (OR: 1.18, 95% CI: 0.92 - 1.52, P = 0.181), and COVID-19 (OR: 1.01, 95% CI: 0.78 - 1.30, P = 0.952). Reversely, with lung cancer as the exposure, we observed that overall lung cancer had statistically crucial associations with bacterial pneumonia (OR: 1.08, 95% CI: 1.03 - 1.13, P = 0.001) and viral pneumonia (OR: 1.09, 95% CI: 1.01 - 1.19, P = 0.037). Sensitivity analysis also confirmed the robustness of these findings. CONCLUSION This study has presented a systematic investigation into the causal relationships between pneumonia and lung cancer subtypes. Further prospective study is warranted to verify these findings.
Collapse
Affiliation(s)
- Lujia Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiexi Zhang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Targeted Tracer Research and Development Laboratory, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Shbeer AM, Robadi IA. liquid biopsy holds a promising approach for the early detection of cancer: Current information and future perspectives. Pathol Res Pract 2024; 254:155082. [PMID: 38246032 DOI: 10.1016/j.prp.2023.155082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Cancer is becoming a global pandemic, and its occurrence is increasing rapidly, putting a strain on people's families, health systems, and finances, in addition to their physical, mental, and emotional well-being. Many cancer types lack screening programs, and many people at high risk of developing cancer do not follow recommended medical screening regimens because of the nature of currently available screening tests and other compliance issues, despite cancer being the second leading cause of death worldwide. Furthermore, a lot of liquid biopsy methods for early cancer screening are not sensitive enough to catch cancer early. Cancer treatment costs increase with the time it takes to diagnose the disease; therefore, early detection is essential to enhance the quality of life and survival rates. The current status of the liquid biopsy sector is examined in this paper.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|