1
|
Matheny-Rabun C, Mokashi SS, Radenkovic S, Wiggins K, Dukes-Rimsky L, Angel P, Ghesquiere B, Kozicz T, Steet R, Morava E, Flanagan-Steet H. O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder. Cell Rep 2024; 43:114976. [PMID: 39561044 PMCID: PMC11656453 DOI: 10.1016/j.celrep.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.
Collapse
Affiliation(s)
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Peggi Angel
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
2
|
Garapati K, Ranatunga W, Joshi N, Budhraja R, Sabu S, Kantautas KA, Preston G, Perlstein EO, Kozicz T, Morava E, Pandey A. N-glycoproteomic and proteomic alterations in SRD5A3-deficient fibroblasts. Glycobiology 2024; 34:cwae076. [PMID: 39360848 PMCID: PMC7617596 DOI: 10.1093/glycob/cwae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells. We sought to identify N-glycoproteomic and proteomic signatures specific to SRD5A3-CDG, potentially aiding in biomarker discovery and advancing our understanding of disease mechanisms. Using tandem mass tag (TMT)-based relative quantitation, we analyzed fibroblasts derived from five patients along with control fibroblasts. N-glycoproteomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 3,047 glycopeptides with 544 unique N-glycosylation sites from 276 glycoproteins. Of these, 418 glycopeptides showed statistically significant changes with 379 glycopeptides decreased (P < 0.05) in SRD5A3-CDG patient-derived samples. These included high mannose, complex and hybrid glycan-bearing glycopeptides. High mannose glycopeptides from protocadherin Fat 4 and integrin alpha-11 and complex glycopeptides from CD55 were among the most significantly decreased glycopeptides. Proteomics analysis led to the identification of 5,933 proteins, of which 873 proteins showed statistically significant changes. Decreased proteins included cell surface glycoproteins, various mitochondrial protein populations and proteins involved in the N-glycosylation pathway. Lysosomal proteins such as N-acetylglucosamine-6-sulfatase and procathepsin-L also showed reduced levels of phosphorylated mannose-containing glycopeptides. Our findings point to disruptions in glycosylation pathways as well as energy metabolism and lysosomal functions in SRD5A3-CDG, providing clues to improved understanding and management of patients with this disorder.
Collapse
Affiliation(s)
- Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal576 104, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Institute of Bioinformatics, Discoverer Building, 7th Floor, International Technology Park, Whitefield, Bangalore560 066, Karnataka, India
| | - Wasantha Ranatunga
- Department of Clinical Genomics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
| | - Neha Joshi
- Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal576 104, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Institute of Bioinformatics, Discoverer Building, 7th Floor, International Technology Park, Whitefield, Bangalore560 066, Karnataka, India
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
| | - Saniha Sabu
- Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal576 104, Karnataka, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Institute of Bioinformatics, Discoverer Building, 7th Floor, International Technology Park, Whitefield, Bangalore560 066, Karnataka, India
| | - Kristin A. Kantautas
- Sappani Foundation, 72 Leadership Drive, Brampton, Ontario L6Y5T2, Canada
- Perlara PBC, 600 Shoreline Ct, Suite 204, South San Francisco, California 94080, United States
| | - Graeme Preston
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, New York, United States
| | - Ethan O. Perlstein
- Perlara PBC, 600 Shoreline Ct, Suite 204, South San Francisco, California 94080, United States
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, New York, United States
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, 12, Szigeti út, 2nd Floor, Hungary
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, New York, United States
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, 12, Szigeti út, 2nd Floor, Hungary
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota55905, United States
| |
Collapse
|
3
|
Kopčilová J, Ptáčková H, Kramářová T, Fajkusová L, Réblová K, Zeman J, Honzík T, Zdražilová L, Zámečník J, Balážová P, Viestová K, Kolníková M, Hansíková H, Zídková J. Large TRAPPC11 gene deletions as a cause of muscular dystrophy and their estimated genesis. J Med Genet 2024; 61:908-913. [PMID: 38955476 DOI: 10.1136/jmg-2024-110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.
Collapse
Affiliation(s)
- Johana Kopčilová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Ptáčková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Kramářová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Charles University, Second Faculty of Medicine, and Faculty Hospital Motol, Prague, Czech Republic
| | - Patrícia Balážová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Karin Viestová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Hana Hansíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| |
Collapse
|
4
|
Hu Z, Liu R, Gao W, Li J, Wang H, Tang K. A Fully Automated Online Enrichment and Separation System for Highly Reproducible and In-Depth Analysis of Intact Glycopeptide. Anal Chem 2024; 96:8822-8829. [PMID: 38698557 DOI: 10.1021/acs.analchem.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A fully automated online enrichment and separation system for intact glycopeptides, named AutoGP, was developed in this study by integrating three different columns in a nano-LC system. Specifically, the peptide mixture from the enzymatic digestion of a complex biological sample was first loaded on a hydrophilic interaction chromatography (HILIC) column. The nonglycopeptides in the sample were washed off the column, and the glycopeptides retained by the HILIC column were eluted to a C18 trap column to achieve an automated glycopeptide enrichment. The enriched glycopeptides were further eluted to a C18 column for separation, and the separated glycopeptides were eventually analyzed by using an orbitrap mass spectrometer (MS). The optimal operating conditions for AutoGP were systemically studied, and the performance of the fully optimized AutoGP was compared with a conventional manual system used for glycopeptide analysis. The experimental evaluation shows that the total number of glycopeptides identified is at least 1.5-fold higher, and the median coefficient of variation for the analyses is at least 50% lower by using AutoGP, as compared to the results acquired by using the manual system. In addition, AutoGP can perform effective analysis even with a 1-μg sample amount, while a 10-μg sample at least will be needed by the manual system, implying an order of magnitude better sensitivity of AutoGP. All the experimental results have consistently proven that AutoGP can be used for much better characterization of intact glycopeptides.
Collapse
Affiliation(s)
- Zhonghan Hu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Hongxia Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
5
|
Ligezka AN, Budhraja R, Nishiyama Y, Fiesel FC, Preston G, Edmondson A, Ranatunga W, Van Hove JLK, Watzlawik JO, Springer W, Pandey A, Morava E, Kozicz T. Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG. Genes (Basel) 2023; 14:1585. [PMID: 37628636 PMCID: PMC10454768 DOI: 10.3390/genes14081585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
Collapse
Affiliation(s)
- Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Yurika Nishiyama
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Edmondson
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johan L. K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80309, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biophysics, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
6
|
Zdrazilova L, Rakosnikova T, Himmelreich N, Ondruskova N, Pasak M, Vanisova M, Volfova N, Honzik T, Thiel C, Hansikova H. Metabolic adaptation of human skin fibroblasts to ER stress caused by glycosylation defect in PMM2-CDG. Mol Genet Metab 2023; 139:107629. [PMID: 37392701 DOI: 10.1016/j.ymgme.2023.107629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
PMM2-CDG is the most prevalent type of congenital disorders of glycosylation (CDG). It is caused by pathogenic variants in the gene encoding phosphomannomutase 2 (PMM2), which converts mannose-6-phosphate to mannose-1-phosphate and thus activates this saccharide for further glycosylation processes. Defective glycosylation can lead to an abnormal accumulation of unfolded proteins in endoplasmic reticulum (ER) and cause its stress. The ER is a key compartment for glycosylation, and its connection and communication with mitochondria has been described extensively in literature. Their crosstalk is important for cell proliferation, calcium homeostasis, apoptosis, mitochondrial fission regulation, bioenergetics, autophagy, lipid metabolism, inflammasome formation and unfolded protein response. Therefore, in the present study we posed a question, whether defective glycosylation leads to bioenergetic disruption. Our data reveal possible chronic stress in ER and activated unfolded protein response via PERK pathway in PMM2-CDG fibroblasts. Presumably, it leads to bioenergetic reorganization and increased assembly of respiratory chain complexes into supercomplexes together with suppressed glycolysis in PMM2-CDG patient cells. These changes cause alterations in Krebs cycle, which is tightly connected to electron transport system in mitochondria. In summary, we present data showing metabolic adaptation of cells to glycosylation defect caused by various pathogenic variants in PMM2.
Collapse
Affiliation(s)
- L Zdrazilova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - T Rakosnikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - N Himmelreich
- Centre for Child and Adolescent Medicine Heidelberg, Department 1, Heidelberg, Germany
| | - N Ondruskova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - M Pasak
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - M Vanisova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - N Volfova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - T Honzik
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - C Thiel
- Centre for Child and Adolescent Medicine Heidelberg, Department 1, Heidelberg, Germany
| | - H Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
7
|
Lee HF, Chi CS. Congenital disorders of glycosylation and infantile epilepsy. Epilepsy Behav 2023; 142:109214. [PMID: 37086590 DOI: 10.1016/j.yebeh.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan; Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| |
Collapse
|
8
|
Paprocka J. Neurological Consequences of Congenital Disorders of Glycosylation. ADVANCES IN NEUROBIOLOGY 2023; 29:219-253. [PMID: 36255677 DOI: 10.1007/978-3-031-12390-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chapter is devoted to neurological aspects of congenital disorders of glycosylation (CDG). At the beginning, the various types of CDG with neurological presentation of symptoms are summarized. Then, the occurrence of various neurological constellation of abnormalities (for example: epilepsy, brain anomalies on neuroimaging, ataxia, stroke-like episodes, autistic features) in different CDG types are discussed followed by data on possible biomarkers and limited treatment options.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
Wang J, Gou X, Wang X, Zhang J, Zhao N, Wang X. Case Report: The novel hemizygous mutation in the SSR4 gene caused congenital disorder of glycosylation type iy: A case study and literature review. Front Genet 2022; 13:955732. [PMID: 36386804 PMCID: PMC9643473 DOI: 10.3389/fgene.2022.955732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Recently, the hemizygous variation of SSR4 gene has been reported to be associated with congenital disorder of glycosylation type Iy. To date, only 13 patients have been diagnosed with SSR4-CDG in the worldwide, but it has not been reported in the Chinese population. Methods: Whole-exome sequencing and gene copy number variation analysis were used to genetic analysis. The mRNA expression of SSR4 gene in blood was detected by Real-time Quantitative PCR. The clinical manifestations of all patients reported in the literature were reviewed. Results: WES analysis identified a de novo hemizygous variant c.269G>A (p.Trp90*) of SSR4 gene in the proband with psychomotor retardation, microcephaly, abnormal facial features, and nystagmus. This variant has not been reported in previous studies. The in vivo mRNA expression of SSR4 gene in patient was significantly decreased. Literature review showed that all 14 patients, including our patient, presented with hypotonia, intellectual disability, developmental delay, microcephaly, and abnormal facial features, while most patients had feeding difficulties, growth retardation, and ocular abnormalities, and epilepsy and skeletal abnormalities are less common. Conclusion: We reported the first case of SSR4-CDG caused by SSR4 variant in Chinese population, expanded the clinical and mutation spectra of the disorder, clarified the genetic etiology of the patient, and offered support for the prenatal diagnosis of the index family.
Collapse
|
10
|
Franzka P, Turecki G, Cubillos S, Kentache T, Steiner J, Walter M, Hübner CA, Engmann O. Altered mannose metabolism in chronic stress and depression is rapidly reversed by vitamin B12. Front Nutr 2022; 9:981511. [PMID: 36313076 PMCID: PMC9609420 DOI: 10.3389/fnut.2022.981511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
GDP-Mannose Pyrophosphorylase B (GMPPB) is a key enzyme for glycosylation. Previous studies suggested a dysregulation of GMPBB and mannose in depression. Evidence, however, was sporadic and interventions to reverse these changes are unknown. Here, we show that GMPPB protein, but not RNA abundance is increased in the postmortem prefrontal cortex (PFC) of depressed patients and the chronic variable stress (CVS) mouse-model. This is accompanied by higher plasma mannose levels. Importantly, a single dose of intraperitoneally administered vitamin B12, which has previously been shown to rapidly reverse behavioral symptoms and molecular signatures of chronic stress in mice, normalized GMPPB plasma mannose levels and elevated GDP-mannose abundance. In summary, these data underline metabolic dysregulation in chronic stress and depression and provide further support for rapid effects of vitamin B12 on chronic stress.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Susana Cubillos
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Johann Steiner
- Clinic for Psychiatry and Psychotherapy, University Hospital of Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Olivia Engmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany,Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany,*Correspondence: Olivia Engmann,
| |
Collapse
|
11
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
12
|
İnci A, Cengiz B, Biberoğlu G, Okur İ, Arhan E, Öner AY, Kasapkara ÇS, Küçükçongar A, Tümer L, Ezgu F. Congenital defects of glycosylation: Novel presentations with mainly neurological involvement and variable dysmorphic features. Am J Med Genet A 2021; 185:2739-2747. [PMID: 33960646 DOI: 10.1002/ajmg.a.62247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/09/2022]
Abstract
The pathophysiology of congenital defects of glycosylation (CDG) is complex and the diagnosis has been a challenge because of the overlapping clinical signs and symptoms as well as a large number of disorders. Isoelectric focusing of transferrin has been used as a screening method but has limitations. Individual enzyme or molecular genetic tests have been difficult to perform. In this study, we aimed to describe CDG patients who were referred to from different departments either without a preliminary diagnosis or suspected to have a genetic disorder other than CDG. The patients were diagnosed mainly with a 450 gene next-generation DNA sequencing panel for inborn errors of metabolism, which also included 25 genes for CDG. A total of 862 patients were investigated with the panel, whereby homozygous (10) or compound heterozygous (4) mutations were found in a total of 14 (1.6%) patients. A total of 13 different mutations were discovered, 10 of them being novel. Interestingly, none of the patients was suspected to have a CDG before referral. This report expands the clinical/laboratory findings in patients with CDG and stresses on the fact that CDG should be in the differential list for pediatric patients presented with nonspecific dysmorphic features and neurological delays/regression. Also, next-generation DNA sequencing with panel approach was noticed to have a significant diagnostic potential in patients presented with nonspecific neurologic and dysmorphic findings.
Collapse
Affiliation(s)
- Aslı İnci
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| | - Başak Cengiz
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| | - Gürsel Biberoğlu
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| | - İlyas Okur
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| | - Ebru Arhan
- Faculty of Medicine, Department of Pediatric Neurology, Gazi University, Ankara, Turkey
| | - Ali Yusuf Öner
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | | | - Aynur Küçükçongar
- Ankara City Hospital, Department of Metabolic Disorders, Ankara, Turkey
| | - Leyla Tümer
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| | - Fatih Ezgu
- Faculty of Medicine, Department of Metabolic Diseases, Gazi University, Ankara, Turkey
| |
Collapse
|
13
|
Quelhas D, Martins E, Azevedo L, Bandeira A, Diogo L, Garcia P, Sequeira S, Ferreira AC, Teles EL, Rodrigues E, Fortuna AM, Mendonça C, Fernandes HC, Medeira A, Gaspar A, Janeiro P, Oliveira A, Laranjeira F, Ribeiro I, Souche E, Race V, Keldermans L, Matthijs G, Jaeken J. Congenital Disorders of Glycosylation in Portugal-Two Decades of Experience. J Pediatr 2021; 231:148-156. [PMID: 33340551 DOI: 10.1016/j.jpeds.2020.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To describe the clinical, biochemical, and genetic features of both new and previously reported patients with congenital disorders of glycosylation (CDGs) diagnosed in Portugal over the last 20 years. STUDY DESIGN The cohort includes patients with an unexplained multisystem or single organ involvement, with or without psychomotor disability. Serum sialotransferrin isoforms and, whenever necessary, apolipoprotein CIII isoforms and glycan structures were analyzed. Additional studies included measurement of phosphomannomutase (PMM) activity and analysis of lipid-linked oligosaccharides in fibroblasts. Sanger sequencing and massive parallel sequencing were used to identify causal variants or the affected gene, respectively. RESULTS Sixty-three individuals were diagnosed covering 14 distinct CDGs; 43 patients diagnosed postnatally revealed a type 1, 14 a type 2, and 2 a normal pattern on serum transferrin isoelectrofocusing. The latter patients were identified by whole exome sequencing. Nine of them presented also a hypoglycosylation pattern on apolipoprotein CIII isoelectrofocusing, pointing to an associated O-glycosylation defect. Most of the patients (62%) are PMM2-CDG and the remaining carry pathogenic variants in ALG1, ATP6AP1, ATP6AP2, ATP6V0A2, CCDC115, COG1, COG4, DPAGT1, MAN1B1, SLC35A2, SRD5A3, RFT1, or PGM1. CONCLUSIONS Portuguese patients with CDGs are presented in this report, some of them showing unique clinical phenotypes. Among the 14 genes mutated in Portuguese individuals, 8 are shared with a previously reported Spanish cohort. However, regarding the mutational spectrum of PMM2-CDG, the most frequent CDG, a striking similarity between the 2 populations was found, as only 1 mutated allele found in the Portuguese group has not been reported in Spain.
Collapse
Affiliation(s)
- Dulce Quelhas
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal; Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal.
| | - Esmeralda Martins
- Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal; Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luísa Azevedo
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Population Genetics and Evolution Group, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Anabela Bandeira
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luísa Diogo
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Paula Garcia
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Sílvia Sequeira
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Ana Cristina Ferreira
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Elisa Leão Teles
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de S João, Porto, Portugal
| | - Esmeralda Rodrigues
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de S João, Porto, Portugal
| | - Ana Maria Fortuna
- Unidade de Genética Médica, Centro Genética Médica, Centro Hospitalar do Porto, Porto, Portugal
| | - Carla Mendonça
- Centro de Neuropediatria e Desenvolvimento, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | | | | | - Ana Gaspar
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Sta Maria, CHLN, Lisboa, Portugal
| | - Patrícia Janeiro
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Sta Maria, CHLN, Lisboa, Portugal
| | - Anabela Oliveira
- Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de Sta Maria, CHLN, Lisboa, Portugal
| | - Francisco Laranjeira
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Erica Souche
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valérie Race
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Gert Matthijs
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Paprocka J, Jezela-Stanek A, Boguszewicz Ł, Sokół M, Lipiński P, Jamroz E, Emich-Widera E, Tylki-Szymańska A. The First Metabolome Analysis in Children with Epilepsy and ALG13-CDG Resulting from c.320A>G Variant. CHILDREN (BASEL, SWITZERLAND) 2021; 8:251. [PMID: 33807002 PMCID: PMC8004727 DOI: 10.3390/children8030251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND ALG13-CDG belongs to the congenital disorders of glycosylation (CDG), which is an expanding group of multisystemic metabolic disorders caused by the N-linked, O-linked oligosaccharides, shared substrates, glycophosphatidylinositol (GPI) anchors, and dolichols pathways with high genetic heterogeneity. Thus, as far as clinical presentation, laboratory findings, and treatment are concerned, many questions are to be answered. Three individuals presented here may serve as a good example of clinical heterogeneity. This manuscript describes the first metabolomic analysis using NMR in three patients with epileptic encephalopathy due to the recurrent c.320A>G variant in ALG13, characterized to date only in about 60 individuals (mostly female). This is an important preliminary step in the understanding of the pathogenesis of the disease associated with this variant in the rare genetic condition. The disease is assumed to be a disorder of N-glycosylation given that this is the only known function of the ALG13 protein. Despite this, protein electrophoresis, which is abnormal in most conditions due to abnormalities in N-glycosylation, has been normal or only mildly abnormal in the ALG13 patients. METHODS Nuclear magnetic resonance (NMR) spectroscopy in conjunction with multivariate and univariate modelling were used to analyze the metabolic profile of the blood serum samples acquired from the studied patients. RESULTS Three metabolites were identified as potential biomarkers: betaine, N-acetyl-glycoprotein, and carnitine. CONCLUSIONS Since presented data are the first to be collected so far, they need be verified in further studies. Our intention was to turn attention toward possible CDG-ALG13 laboratory markers that would have clinical significance.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (Ł.B.); (M.S.)
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (Ł.B.); (M.S.)
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (P.L.); (A.T.-S.)
| | - Ewa Jamroz
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (P.L.); (A.T.-S.)
| |
Collapse
|
15
|
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci 2021; 11:brainsci11010088. [PMID: 33440761 PMCID: PMC7827962 DOI: 10.3390/brainsci11010088] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post-translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations in the following genes: ALG13, DOLK, DPAGT1, SLC35A2, ST3GAL3, PIGA, PIGW, ST3GAL5. On brain neuroimaging, atrophic changes of the cerebellum and cerebrum are frequently seen. Brain malformations particularly in the group of dystroglycanopathies are reported. Despite the growing number of CDG patients in the world and often neurological symptoms dominating in the clinical picture, the number of performed screening tests eg transferrin isoforms is systematically decreasing as broadened genetic testing is recently more favored. The aim of the review is the summary of selected neurological symptoms in CDG described in the literature in one paper. It is especially important for pediatric neurologists not experienced in the field of metabolic medicine. It may help to facilitate the diagnosis of this expanding group of disorders. Biochemically, this paper focuses on protein glycosylation abnormalities.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-606-415-888
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland;
| | - Stephanie Grunewald
- NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK;
| |
Collapse
|
16
|
Parikh S, Karaa A, Goldstein A, Bertini ES, Chinnery PF, Christodoulou J, Cohen BH, Davis RL, Falk MJ, Fratter C, Horvath R, Koenig MK, Mancuso M, McCormack S, McCormick EM, McFarland R, Nesbitt V, Schiff M, Steele H, Stockler S, Sue C, Tarnopolsky M, Thorburn DR, Vockley J, Rahman S. Diagnosis of 'possible' mitochondrial disease: an existential crisis. J Med Genet 2019; 56:123-130. [PMID: 30683676 DOI: 10.1136/jmedgenet-2018-105800] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 02/02/2023]
Abstract
Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.
Collapse
Affiliation(s)
- Sumit Parikh
- Mitochondrial Medicine Center, Neurologic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amel Karaa
- Genetics Unit, Mitochondrial Disease Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Bruce H Cohen
- Department of Pediatrics and Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ryan L Davis
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carl Fratter
- NHS Specialized Services for Rare Mitochondrial Disorders of Adults and Children UK, Oxford, UK.,Oxford Medical Genetics Laboratories, Oxford University, Oxford, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mary Kay Koenig
- Department of Pediatrics, Mitochondrial Center, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Michaelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Shana McCormack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Robert McFarland
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | - Victoria Nesbitt
- Institute of Neurosciences, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Oxford University Hospitals, Oxford, UK
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert-Debré University Hospital, APHP, UMR1141, PROTECT, INSERM, Université Paris-Diderot, Paris, France
| | - Hannah Steele
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Neurology, Sunderland Royal Hospital, Sunderland, UK
| | - Silvia Stockler
- Department of Pediatrics, Division of Biochemical Diseases, University of British Columbia, Vancouver, Canada
| | - Carolyn Sue
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Neurogenetics, Koling Institute, University of Sydney and Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, NewSouth Wales, Australia
| | - Mark Tarnopolsky
- Department of Pediatrics, Neuromuscular and Neurometabolic Clinic, McMaster University, Hamilton, Ontario, Canada
| | - David R Thorburn
- Royal Children's Hospital, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine; Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.,Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ, Urtizberea JA, Saran RK, Taft RJ, van der Knaap MS, Simons C. Leukoencephalopathy due to variants in GFPT1-associated congenital myasthenic syndrome. Neurology 2019; 92:e587-e593. [PMID: 30635494 DOI: 10.1212/wnl.0000000000006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.
Collapse
Affiliation(s)
- Guy Helman
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Suvasini Sharma
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Joanna Crawford
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Bijoy Patra
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Puneet Jain
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Stephen J Bent
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - J Andoni Urtizberea
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ravindra K Saran
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Ryan J Taft
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| | - Cas Simons
- From the Murdoch Children's Research Institute (G.H., C.S.), Parkville, Melbourne; Institute for Molecular Bioscience (G.H., J.C., C.S.), the University of Queensland, Brisbane, Australia; Neurology Division (S.S., B.P., P.J.), Department of Pediatrics, Lady Hardinge Medical College, New Delhi, India; Division of Neurology (P.J.), Department of Pediatrics, the Hospital for Sick Children, Toronto, Canada; Data61 (S.J.B.), Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia; Hôpital Marin (J.A.U.), Centre Neuromusculaire, Filnemus, Hendaye, France; Department of Pathology (R.K.S.), G.B. Pant Hospital, New Delhi, India; Illumina, Inc. (R.J.T.), San Diego, CA; Department of Child Neurology (M.S.v.d.K.), Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience; and Department of Functional Genomics (M.S.v.d.K.), Neuroscience Campus Amsterdam, the Netherlands.
| |
Collapse
|