1
|
Behzadnia A, Moosavi-Nasab M, Oliyaei N. Anti-biofilm activity of marine algae-derived bioactive compounds. Front Microbiol 2024; 15:1270174. [PMID: 38680918 PMCID: PMC11055458 DOI: 10.3389/fmicb.2024.1270174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
A large number of microbial species tend to communicate and produce biofilm which causes numerous microbial infections, antibiotic resistance, and economic problems across different industries. Therefore, advanced anti-biofilms are required with novel attributes and targets, such as quorum sensing communication system. Meanwhile, quorum sensing inhibitors as promising anti-biofilm molecules result in the inhibition of particular phenotype expression blocking of cell-to-cell communication, which would be more acceptable than conventional strategies. Many natural products are identified as anti-biofilm agents from different plants, microorganisms, and marine extracts. Marine algae are promising sources of broadly novel compounds with anti-biofilm activity. Algae extracts and their metabolites such as sulfated polysaccharides (fucoidan), carotenoids (zeaxanthin and lutein), lipid and fatty acids (γ-linolenic acid and linoleic acid), and phlorotannins can inhibit the cell attachment, reduce the cell growth, interfere in quorum sensing pathway by blocking related enzymes, and disrupt extracellular polymeric substances. In this review, the mechanisms of biofilm formation, quorum sensing pathway, and recently identified marine algae natural products as anti-biofilm agents will be discussed.
Collapse
Affiliation(s)
- Asma Behzadnia
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Najmeh Oliyaei
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Al-Qahtani MA. Efficacy of antimicrobial photodynamic therapy in disinfection of Candida biofilms on acrylic dentures: A systematic review. Photodiagnosis Photodyn Ther 2022; 40:102980. [PMID: 35809827 DOI: 10.1016/j.pdpdt.2022.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this systematic review was to critically analyze and summarize the currently available scientific evidence concerning antifungal efficacy of aPDT against Candida on acrylic surface. METHODS The focused question was: '"Is aPDT effective in minimizing the counts of Candida on acrylic dentures". A literature search was conducted interpedently on the following electronic research databases: PubMED/MEDLINE, Cochrane, Google Scholar and Embase. The MeSH terms used were: ((antimicrobial photodynamic therapy) OR (light) OR (laser) OR (photodynamic)) AND ((Candida) OR (denture stomatitis)) AND ((denture) OR (acrylic) OR (polymethylmethacrylate) OR (dental prosthesis)). Data was extracted from the studies and quality assessment was carried out using a modified version of the CONSORT checklist. RESULTS Eighteen in-vitro anti-microbial studies and 5 clinical studies were included. Twenty-two studies suggested that aPDT was effective in reducing the Candida count on acrylic dentures and one study did not have a significant effect. 19 out of 23 studies were graded as having 'medium' quality and 4 studies were graded as 'high'. Several photosensitizers, including methylene blue, porphyrin derivatives, toluidine blue-O and others were used. LED was the most popular light source used for photo-activation of the photosensitizers. CONCLUSION Within the limitations of this review, aPDT is effective in reducing Candida growth on acrylic dentures and may prove to be clinical effective in preventing or treating denture stomatitis. However, more long-term clinical research is required before its clinical efficacy can be determined.
Collapse
Affiliation(s)
- Mohammed Ayedh Al-Qahtani
- Prosthetic Dental Science department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
3
|
Pourhajibagher M, Noroozian M, Ahmad Akhoundi MS, Bahador A. Antimicrobial effects and mechanical properties of poly(methyl methacrylate) as an orthodontic acrylic resin containing Curcumin-Nisin-poly(L-lactic acid) nanoparticle: an in vitro study. BMC Oral Health 2022; 22:158. [PMID: 35524235 PMCID: PMC9074270 DOI: 10.1186/s12903-022-02197-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The porous surface of acrylic orthodontic removable appliances creates a niche for microbial plaque accumulation, and changes the oral flora by raising cariogenic bacteria including Streptococcus mutans. In this study, we evaluated the mechanical properties and antimicrobial activities of incorporating different concentrations of Curcumin-Nisin-poly(L-lactic acid) nanoparticle (CurNisNps) into orthodontic acrylic resin against Streptococcus mutans and Candida albicans. METHODS Following synthesis and characterization of CurNisNps, acrylic resin specimens with different concentrations of CurNisNps (0, 1, 2, 5, and 10% w/w) were fabricated. Flexural strength values, antimicrobial effects, anti-biofilm potential, and anti-metabolic activity against S. mutans and C. albicans were assessed at different time intervals. Also, the expression of the virulence-factor-related genes of S. mutans and C. albicans was assessed by quantitative real-time polymerase chain reaction following treatment with CurNisNps. RESULTS Acrylic resin containing 10% CurNisNps (30.76 ± 3.91 MPa) showed flexural failure in comparison with acrylic resin specimens without CurNisNps (50.67 ± 1.82 MPa) as the control group (P < 0.05). There was no significant decrease in the flexural strength values in samples containing 1, 2, and 5% of CurNisNps in comparison to the control group (P > 0.05). Acrylic resin with 5% CurNisNps showed the highest concentration of CurNisNps and clinically accepted flexural strength value (14.89 ± 3.26 MPa, P < 0.05) simultaneously. In the disc agar diffusion assay, 5% CurNisNps showed a high level of inhibitory activity for the test microorganisms. The reduction of growth inhibition zones of the different concentrations of CurNisNps against test microorganisms was positively associated with the time, in such a way that it was reduced significantly after 60 days. The anti-biofilm and anti-metabolic activities of acrylic resin specimens containing a 5% concentration of CurNisNps against S. mutans and C. albicans could significantly decrease the expression levels of gtfB (6.8-fold) and HWP (3.4-fold) in S. mutans and C. albicans, respectively. CONCLUSIONS Our data support that 5% (w/w) of CurNisNps can serve as an excellent orthodontic acrylic resin additive against S. mutans and C. albicans biofilm without adverse effects on its mechanical property.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Noroozian
- Department of Orthodontics, School of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, School of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Sadegh Ahmad Akhoundi
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
4
|
Pourhajibagher M, Salehi-Vaziri A, Noroozian M, Akbar H, Bazarjani F, Ghaffari H, Bahador A. An orthodontic acrylic resin containing seaweed Ulva lactuca as a photoactive phytocompound in antimicrobial photodynamic therapy: Assessment of anti-biofilm activities and mechanical properties. Photodiagnosis Photodyn Ther 2021; 35:102295. [PMID: 33866014 DOI: 10.1016/j.pdpdt.2021.102295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Uncontrolled accumulation of microbial plaque and formation of biofilm on the surface orthodontic acrylic removable appliances increases the risk of enamel decalcification and periodontal diseases. The purpose of the present study was to evaluate antimicrobial activities, anti-virulence potencies, and mechanical properties of orthodontic acrylic resin containing different concentrations of Ulva lactuca (a green marine macroalga) following photo-activation against Streptococcus mutans. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) of U. lactuca was determined against S. mutans. Acrylic resin specimens with different concentrations of U. lactuca (0.2 %, 0.5 %, 1%, 2.5 %, 5%, and 10 % weight/weight) were fabricated. Flexural strength values, antimicrobial effects, and anti-biofilm activities of samples were assessed in comparison with original acrylic resin as the control group. Also, the expression of the virulence-associated genes was assessed by quantitative real-time polymerase chain reaction. RESULTS U. lactuca at concentrations of 1-10% significantly reduced the S. mutans growth rate by 20.3%-63.3% in comparison to the control group (P < 0.05). Therefore, the concentration of 1% of U. lactuca was considered as a MIC. The highest and lowest flexural strength values were observed in the control group (43.5 ± 2.4 MPa) and the group with a 10 % concentration of U. lactuca (19.2 ± 1.8 MPa), respectively. Flexural strength values decreased in samples containing 2.5 %, 5%, and 10 % concentrations of U. lactuca in comparison to the control group significantly (P > 0.05). In the disc agar diffusion test, the growth inhabitation zones around samples containing different concentrations of photo-activated U. lactuca ranged from 13 mm to 25 mm in diameter. Interestingly, the anti-biofilm activity of U. lactuca-mediated aPDT against S. mutans was dose-dependent. Additionally, the sub-MIC dose of U. lactuca (0.5 %) following photo-activation could significantly decrease the expression levels of gtfB, gtfC, and gtfD to 4.1-, 5.3-, and 7.4-fold, respectively. CONCLUSIONS Adding photo-activated U. lactuca to the orthodontic acrylic resin at a concentration of 1% increases its antibacterial and anti-biofilm activities besides not detrimentally affects its flexural strength.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Noroozian
- Department of Orthodontics, School of Dentistry, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Akbar
- School of Dentistry, Shahed University, Tehran, Iran
| | | | | | - Abbas Bahador
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Rodrigues ME, Gomes F, Rodrigues CF. Candida spp./Bacteria Mixed Biofilms. J Fungi (Basel) 2019; 6:jof6010005. [PMID: 31861858 PMCID: PMC7151131 DOI: 10.3390/jof6010005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is a common feature of microorganisms, such as bacteria or fungi. These consortiums can colonize a variety of surfaces, such as host tissues, dentures, and catheters, resulting in infections highly resistant to drugs, when compared with their planktonic counterparts. This refractory effect is particularly critical in polymicrobial biofilms involving both fungi and bacteria. This review emphasizes Candida spp.-bacteria biofilms, the epidemiology of this community, the challenges in the eradication of such biofilms, and the most relevant treatments.
Collapse
Affiliation(s)
- Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO–Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.E.R.); (F.G.)
| | - Célia F. Rodrigues
- LEPABE–Dep. of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|