1
|
Bolshakova O, Lebedev V, Mikhailova E, Zherebyateva O, Aznabaeva L, Burdakov V, Kulvelis Y, Yevlampieva N, Mironov A, Miroshnichenko I, Sarantseva S. Fullerenes on a Nanodiamond Platform Demonstrate Antibacterial Activity with Low Cytotoxicity. Pharmaceutics 2023; 15:1984. [PMID: 37514170 PMCID: PMC10383838 DOI: 10.3390/pharmaceutics15071984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Carbon nanoparticles with antimicrobial properties, such as fullerenes, can be distinguished among the promising means of combating pathogens characterized by resistance to commercial antibiotics. However, they have a number of limitations for their use in medicine. In particular, the insolubility of carbon nanoparticles in water leads to a low biocompatibility and especially strong aggregation when transferred to liquid media. To overcome the negative factors and enhance the action of fullerenes in an extended range of applications, for example, in antimicrobial photodynamic therapy, we created new water-soluble complexes containing, in addition to C60 fullerene, purified detonation nanodiamonds (AC960) and/or polyvinylpyrrolidone (PVP). The in vitro antibacterial activity and toxicity to human cells of the three-component complex C60+AC960+PVP were analyzed in comparison with binary C60+PVP and C60+AC960. All complexes showed a low toxicity to cultured human skin fibroblasts and ECV lines, as well as significant antimicrobial activity, which depend on the type of microorganisms exposed, the chemical composition of the complex, its dosage and exposure time. Complex C60+PVP+AC960 at a concentration of 175 µg/mL showed the most stable and pronounced inhibitory microbicidal/microbiostatic effect.
Collapse
Affiliation(s)
- Olga Bolshakova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| | - Vasily Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| | - Elena Mikhailova
- Department of Microbiology, Virology, Immunology, Faculty of Preventive Medicine, Orenburg State Medical University (OrSMU), 460000 Orenburg, Russia
| | - Olga Zherebyateva
- Department of Microbiology, Virology, Immunology, Faculty of Preventive Medicine, Orenburg State Medical University (OrSMU), 460000 Orenburg, Russia
| | - Liliya Aznabaeva
- Department of Microbiology, Virology, Immunology, Faculty of Preventive Medicine, Orenburg State Medical University (OrSMU), 460000 Orenburg, Russia
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| | - Yuri Kulvelis
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| | - Natalia Yevlampieva
- Physical Faculty, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey Mironov
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Igor Miroshnichenko
- Department of Normal Physiology, Faculty of General Medicine, Orenburg State Medical University (OrSMU), 460000 Orenburg, Russia
| | - Svetlana Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, NRC "Kurchatov Institute", 188300 Gatchina, Russia
| |
Collapse
|
2
|
Safonova EA, Kolomeychuk FM, Gvozdev DA, Tsivadze AY, Gorbunova YG. Tuning Photochemical and Photophysical Properties of P(V) Phthalocyanines. Molecules 2023; 28:molecules28031094. [PMID: 36770759 PMCID: PMC9920145 DOI: 10.3390/molecules28031094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The ability of P(V) phthalocyanines (Pcs) for efficient singlet oxygen (SO) generation was demonstrated for the first time by the example of unsubstituted and α- and β-octabutoxy-substituted P(V)Pcs with hydroxy, methoxy and phenoxy ligands in the apical positions of the octahedral P centre. Variation of substituents in Pc ring and P(V) axial ligands allows careful tuning of photophysical and photochemical properties. Indeed, a combination of BuO groups in the β-positions of the Pc ring and PhO groups as axial ligands provides significant SO generation quantum yields up to 90%; meanwhile, the values of SO generation quantum yields for others investigated compounds vary from 27 to 55%. All the complexes, except α-substituted P(V)Pc, demonstrate fluorescence with moderate quantum yields (10-16%). The introduction of electron-donating butoxy groups, especially in the α-position, increases the photostability of P(V)Pcs. Moreover, it has been shown in the example of β-BuO-substituted P(V) that the photostability depends on the nature of axial ligands and increases in the next row: OPh < OMe < OH. The presence of oxy/hydroxy axial ligands on the P(V) atom makes it possible to switch the photochemical and photophysical properties of P(V)Pcs by changing the acidity of the media.
Collapse
Affiliation(s)
- Evgeniya A. Safonova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Bldg. 4, 119071 Moscow, Russia
| | - Filipp M. Kolomeychuk
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Bldg. 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Daniil A. Gvozdev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Bldg. 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Bldg. 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Santos CIM, Cicuéndez M, Gonçalves G, Rodríguez-Pérez L, Portolés MT, Faustino MAF, Herranz MÁ, Neves MGPMS, Martinho JMG, Maçôas EMS, Martín N. Safety assessment of new nanodiamonds@corrole hybrids addressed by the response of RAW-264.7 macrophages. J Mater Chem B 2023; 11:675-686. [PMID: 36562480 DOI: 10.1039/d2tb01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Carla I M Santos
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Cicuéndez
- Chemistry Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), E-28040, Madrid, Spain
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.,Intelligent Systems Associate Laboratory (LASI), Portugal
| | - Laura Rodríguez-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Teresa Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain, E-28040 Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Ángeles Herranz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ermelinda M S Maçôas
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
4
|
de Oliveira de Siqueira LB, Dos Santos Matos AP, da Silva MRM, Pinto SR, Santos-Oliveira R, Ricci-Júnior E. Pharmaceutical Nanotechnology Applied to Phthalocyanines for the Promotion of the Antimicrobial Photodynamic Therapy: A Literature Review. Photodiagnosis Photodyn Ther 2022; 39:102896. [PMID: 35525432 DOI: 10.1016/j.pdpdt.2022.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Phthalocyanines are photosensitizers activated by light at a specific wavelength in the presence of oxygen and act topically through the production of Reactive Oxygen Species, which simultaneously attack several biomolecular targets in the pathogen agent and, therefore, have multiple and variable action sites. This nonspecific action site delineates the conventional resistance mechanisms. Antimicrobial Photodynamic Therapy (aPDT) is safe, easy to implement and, unlike conventional agents, the activity spectrum of photoantimicrobials. This work is a systematic review of the literature based on nanocarriers containing phthalocyanines in aPDT against bacteria, fungi, viruses, and protozoa. The search was performed in two different databases (MEDLINE/PubMed and Web of Science) between 2011 and May 2021. Nanocarriers often improve the action or are equivalent to free drugs, but their use allows substituting the organic solvent in the case of hydrophobic phthalocyanines, allowing for a safer application of aPDT with the possibility of prolonged release. In the case of hydrophilic phthalocyanines, they would allow for nonspecific site delivery with a possibility of cellular internalization. A single infectious lesion can have multiple microorganisms, and PDT with phthalocyanines is an interesting treatment given its ample spectrum of action. It is possible to highlight the upconversion nanosystems, which allow for the activation of phthalocyanine in deeper tissues by using longer wavelengths, as a system that has not yet been studied, but which could provide treatment solutions. The use of nanocarriers containing phthalocyanines requires more studies in animal models and clinical studies to establish the use of aPDT in humans.
Collapse
Affiliation(s)
| | - Ana Paula Dos Santos Matos
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcio Robert Mattos da Silva
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suyene Rocha Pinto
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceutical and Synthesis of Novels Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro, RJ, Brazil; Laboratory of Nanoradiopharmacy and Radiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Júnior
- Galenic Development Laboratory (LADEG), Pharmacy School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
6
|
Hurtado CR, Hurtado GR, de Cena GL, Queiroz RC, Silva AV, Diniz MF, dos Santos VR, Trava-Airoldi V, Baptista MDS, Tsolekile N, Oluwafemi OS, Conceição K, Tada DB. Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1393. [PMID: 34070326 PMCID: PMC8227420 DOI: 10.3390/nano11061393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of -23 mV. The antibacterial activity of ND-mTHPP was evaluated against Escherichia coli for different incubation times (0-24 h). The optimal activity was observed after 2 h of incubation and irradiation (660 nm; 51 J/cm2) performed right after the addition of ND-mTHPP (100 μg/mL) to the bacterial suspension. The inhibitory activity was 56% whereas ampicillin at the same conditions provided only 14% of bacterial growth inhibition. SEM images showed agglomerate of ND-mTHPP adsorbed on the bacterial cell wall, suggesting that the antimicrobial activity of ND-mTHPP was afforded by inducing membrane damage. Cytotoxicity against murine embryonic fibroblast cells (MEF) was also evaluated and ND-mTHPP was shown to be noncytotoxic since viability of cells cultured for 24 h in the presence of the nanoconjugate (100 μg/mL) was 78%. Considering the enhanced antibacterial activity and the absence of cytotoxic effect, it is possible to consider the ND-mTHPP nanoconjugate as promising platform for application in antimicrobial photodynamic therapy (aPDT).
Collapse
Affiliation(s)
- Carolina Ramos Hurtado
- Federal Institute of São Paulo (IFSP), São José dos Campos 12223-201, São Paulo, Brazil; (C.R.H.); (R.C.Q.)
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Gabriela Ramos Hurtado
- Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-004, São Paulo, Brazil;
- Institute of Advanced Sea Studies (IEAMAr), São Paulo State University (UNESP), São José dos Campos 12247-004, São Paulo, Brazil
| | - Gabrielle Lupeti de Cena
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Rafaela Campos Queiroz
- Federal Institute of São Paulo (IFSP), São José dos Campos 12223-201, São Paulo, Brazil; (C.R.H.); (R.C.Q.)
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
| | | | - Milton Faria Diniz
- Fundamental Sciences Division, Technological Institute of Aeronautics (ITA), São José dos Campos 12228-900, São Paulo, Brazil;
| | - Verônica Ribeiro dos Santos
- Bioceramics Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil;
| | - Vladimir Trava-Airoldi
- Sensors and Materials Associated Laboratory, National Institute for Space Research (INPE), São José dos Campos 12227-010, São Paulo, Brazil;
| | - Maurício da Silva Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-000, São Paulo, Brazil;
| | - Ncediwe Tsolekile
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (N.T.); (O.S.O.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (N.T.); (O.S.O.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Katia Conceição
- Peptide Biochemistry Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil; (G.L.d.C.); (K.C.)
| | - Dayane Batista Tada
- Nanomaterials and Nanotoxicology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos 12231-280, São Paulo, Brazil
| |
Collapse
|