1
|
Askari S, Zomorodi AR, Aflakian F. Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: a comprehensive review. Microb Pathog 2025; 205:107684. [PMID: 40348206 DOI: 10.1016/j.micpath.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Mastitis, an inflammation of mammary tissue frequently associated with infection, is a prevalent disease among dairy animals. Bacterial intra-mammary infection is identified as a primary cause of bovine mastitis (BM). In dairy cattle, antimicrobials are used for mastitis treatment during the lactating phase and for dry cow therapy. Although self-curing can occur, the success of mastitis treatment depends on several factors, including the type of bacteria responsible for the infection, the effectiveness of the administered antibiotics, and the host's overall immune response. Moreover, the growing resistance of microorganisms to antibiotics has restricted the available treatment options for managing intramammary infections. In addition, the utilization of critically essential antimicrobials in animals raised for food production may elevate the risk of human infections that are challenging to treat. Therefore, it is crucial to have alternative treatments with equivalent or superior effectiveness as part of any stewardship program. These may include the application of nanotechnology, stem cell technology, photodynamic and laser radiation or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics. This review aims to discuss the potential of vaccination as an indirect strategy, along with nanotechnology, probiotics, stem cell therapy, antimicrobial peptides, photodynamic therapy, laser irradiation, and antibody treatments as direct approaches. These approaches are examined as possible alternative therapeutic options to antibiotic treatment for BM.
Collapse
Affiliation(s)
- Sepideh Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Committee of Medical Education Development, Education Development Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
2
|
Wang F, Li L, Xu S. Successful treatment of multiple plantar warts complicated by systemic lupus erythematosus with ALA-PDT, a case report. Photodiagnosis Photodyn Ther 2025; 53:104583. [PMID: 40216318 DOI: 10.1016/j.pdpdt.2025.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Plantar warts are common skin neoplasms caused by human papillomavirus (HPV) infection. Patients with immunocompromised conditions often have a higher prevalence of HPV infection-induced skin warts, with recalcitrant nature to various options of treatment. Here, we diagnosed a case of multiple and coalesced plantar warts complicated by Systemic Lupus Erythematosus (SLE) which persisted for years and was refractory to conventional treatment. Following superficial shaving to remove the thickened corneum, we initiated 5-aminolevulinic acid - photodynamic therapy (ALA-PDT). After four rounds of the treatments within two months, the lesions were completely cleared with no recurrence in one year of follow-up.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo university, Ningbo 315010, PR China; Health science center, Ningbo university, Ningbo 315211, PR China
| | - Lingzhi Li
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo university, Ningbo 315010, PR China
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo university, Ningbo 315010, PR China; Health science center, Ningbo university, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Maj A, Kusiak A, Garbacz K, Cichońska D, Świetlik D. Photodynamic therapy in non-surgical treatment of periodontitis. Sci Rep 2025; 15:5903. [PMID: 39966437 PMCID: PMC11836360 DOI: 10.1038/s41598-025-89563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Periodontitis is a chronic inflammation disease that, apart from caries, remains the main cause of tooth loss, that lead to a deterioration of the quality of life. Non-surgical treatment is the basic form of periodontal therapy, regardless of the stage of the disease. Novel supportive treatment methods are constantly implemented to improve the effects of non-surgical treatment, including photodynamic therapy that leads to a selective photosensitization of bacteria with the simultaneous participation of a photosensitizer applied into the periodontal pocket. The aim of the study is to evaluate the use of adjunctive photodynamic therapy on clinical and microbiological parameters in the non-surgical treatment of periodontitis. The clinical study involved 30 generally healthy, non-smoking patients. After a periodontal examination standard non-surgical treatment was applied. 6 weeks later a control periodontal clinical examination was performed and then periodontal pockets were subjected to a photodynamic therapy (PDT) using the FotoSan 630 cm Dental lamp with a perio tip and the FotoSan agent CMS Dental medium density photosensitizer. A significant improvement in clinical parameters including BoP (reduction 73,3%, p < 0,05), PD (reduction 1,9 mm, p < 0,05) and CAL (gain 0,6 mm, p < 0,05) and a significant reduction of red complex bacteria after application of PDT compared to SRP alone was observed. The application of supportive photodynamic therapy improve the effectiveness of periodontal non-surgical treatment including clinical parameters and reduction in subgingival bacteria biofilm.
Collapse
Affiliation(s)
- Adrian Maj
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, 80-200, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, 80-200, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical University of Gdansk, Gdansk, 80-200, Poland
| | - Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdansk, Gdansk, 80-200, Poland
| | - Dariusz Świetlik
- Department of Biostatistics and Neural Networks, Medical University of Gdansk, Gdansk, 80-210, Poland.
- Department of Biostatistics and Neural Networks, Medical University of Gdańsk, Dębinki 1 St, Gdansk, 80-211, Poland.
| |
Collapse
|
4
|
Song Y, Tang F, Liu J, Yang D, Wang J, Luo X, Zhou Y, Zeng X, Xu H, Chen Q, Dan H. A complete course of photodynamic therapy reduced the risk of malignant transformation of oral leukoplakia. Photodiagnosis Photodyn Ther 2024; 49:104338. [PMID: 39313101 DOI: 10.1016/j.pdpdt.2024.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) has shown good short-term efficacy in the treatment of oral leukoplakia (OLK). However, the malignant transformation of OLK was seldom evaluated in most PDT studies. Therefore, this study evaluated the effect of PDT on the risk of malignant transformation of OLK. METHODS Kaplan-Meier survival analysis, COX regression, and sensitivity analysis were used to evaluate the effects of PDT on the risk of malignant transformation of OLK. Subgroup analyses were performed to explore the role of PDT in OLK patients with different clinical characteristics. RESULTS OLK patients with older age (HR=1.032, P = 0.018) and non-homogeneous lesion (HR=2.104, P = 0.044) had higher risk of malignant transformation. Patients who had finished a complete course of PDT (HR=0.305, P = 0.006) had a significant lower risk of malignant transformation, while those who hadn't finished a complete course of PDT (HR=0.692, P = 0.352) cannot be considered to have such a protective effect. In the subgroup analyses, complete PDT course showed a significant protective effect on malignant transformation of OLK in patients with female sex, no smoking or drinking habits, non-homogeneous lesions, lesions on oral mucosa outside the dangerous region, and any grade of epithelial dysplasia. CONCLUSIONS A complete course of PDT could significantly reduce the risk of malignant transformation of OLK, especially in those patients with risk factors of malignant transformation.
Collapse
Affiliation(s)
- Yansong Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Ma K, Diao H, Xu X, Jin Y, Qiu M, Liu Z, Yang C, Zhao J, Chai S, Fang Q, Guo Z, Cui C, Xu J, Yin L, Ma HY. Dual-targeting of tumor cells and subcellular endoplasmic reticulum via AgPPIX-based Janus nanoparticles for photodynamic/immunotherapy against TNBC. NANOSCALE 2024; 16:12095-12106. [PMID: 38819371 DOI: 10.1039/d4nr01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its strong invasiveness, high recurrence rates, and poor prognosis. Heme oxygenase-1 (HO-1) is closely related to tumor invasion, metastasis, recurrence and formation of tumor immunosuppression. The expression of HO-1 is high in TNBC and low in normal tissues. In this study, AgPPIX was synthesized as a heme oxygenase-1 (HO-1) inhibitor and a photosensitizer for TNBC therapy. PDA nanoparticles were synthesized and modified with anti-CD24 and p-toluenesulfonamide (PTSC) on their both sides to obtain PTSC@AgPPIX/PDA@anti-CD24 Janus nanoparticles (PAPC) for AgPPIX-targeted delivery. Anti-CD24 is targeted to CD24 on tumor cells and the PTSC moiety is targeted to endoplasmic reticulum (ER), where HO-1 is located. The results indicated that PAPC Janus nanoparticles exhibited higher cytotoxicity in 4T1 cells than that of the mono-modified nanoparticles. PAPC not only inhibited the expression of HO-1 and VEGF but also reduced TrxR activity significantly. Furthermore, PAPC not only promoted intracellular ROS production under laser irradiation for tumor photodynamic therapy (PDT) but also polarized TAMs from M2-type to M1 for tumor immunotherapy. In vivo experiments confirmed that PAPC could remodel the tumor immune microenvironment and almost completely inhibit the tumor growth in mouse models. Therefore, PAPC Janus nanoparticles are a promising nanoplatform with a dual-targeting capacity for TNBC immune/PDT synergistic therapy.
Collapse
Affiliation(s)
- Kun Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - He Diao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xiangyi Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yu Jin
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Mingling Qiu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| | - Zicheng Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Chenbo Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jiacheng Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Senchao Chai
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Qingxian Fang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Zhaoming Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Changhao Cui
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Liangwei Yin
- Department of Oncology, Central Hospital of Dalian University of Technology, Dalian 116033, China.
| | - Hai-Ying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
6
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Du L, Cao Z, Wei J, Li M, Han C, Zhang C. Fire needle pretreatment with 5-aminolevulinic acid photodynamic therapy combined with low-dose isotretinoin in the treatment of severe refractory nodulocystic acne. Photodiagnosis Photodyn Ther 2024; 47:104215. [PMID: 38735352 DOI: 10.1016/j.pdpdt.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Nodulocystic acne is a severe form of acne, which is commonly treated with oral isotretinoin, hormones, or antibiotics. However, drug therapy often has some side effects and poor compliance. Fire needle combined with 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a simple, effective, short-term treatment with few adverse reactions, which is expected to be an effective physiotherapy for nodulocystic acne. Moreover, the combination with isotretinoin can reduce the dosage of the drug, thereby reducing the side effects of isotretinoin. OBJECTIVES To evaluate the safety and efficacy of fire-needle pretreated ALA-PDT combined with low-dose isotretinoin in the treatment of severe refractory nodulocystic acne. METHODS This study reported 10 patients with refractory nodulocystic acne who received combined treatment. During the treatment period, all patients received a low dose of oral isotretinoin capsules daily. The acne lesions were pretreated with fire needle before ALA-PDT treatment. The number of acne lesions, including papules, pustules, and nodular cysts, was documented at weeks 0, 2, 4, 8, and 12 to assess the therapeutic efficacy. Concurrently, adverse reactions such as pain, pruritus, and pigmentation changes were recorded and evaluated throughout the treatment course. RESULTS After combined treatment, all patients achieved good therapeutic effects, with an overall effective rate of 90 % at week 12. After treatment, skin lesions such as nodules, and cysts subsided significantly. The combination therapy has no serious adverse effects and has a favorable safety profile. CONCLUSION Fire needle pretreatment ALA-PDT combined with low-dose isotretinoin is effective and safe in the treatment of severe refractory nodular cystic acne, which is worthy of clinical promotion and research.
Collapse
Affiliation(s)
- Lingyun Du
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Zhiqiang Cao
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi, PR China
| | - Jingjing Wei
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Mingming Li
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Changyu Han
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Chunhong Zhang
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
8
|
Krupka-Olek M, Bożek A, Czuba ZP, Kłósek M, Cieślar G, Kawczyk-Krupka A. Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures. Pharmaceutics 2024; 16:696. [PMID: 38931819 PMCID: PMC11207107 DOI: 10.3390/pharmaceutics16060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Determination of the hypericin-photodynamic (HY-PDT) effect on the secretion of cytokines secreted by the skin cells, may be the basis for using the immunomodulatory effect of photodynamic action in the treatment of inflammatory skin diseases. The study aimed to evaluate the cytotoxic and immunomodulatory effects of hypericin (HY) in photodynamic therapy (PDT) performed in vitro on cultures of selected skin cell lines. The study used two human cell lines, primary dermal fibroblast (HDFa) and primary epidermal keratinocytes (HEKa). The MTT test was used to define the metabolic activity of treated cells. Cell supernatants subjected to sublethal PDT were assessed to determine the interleukins: IL-2, IL-8, IL-10, IL-11, IL-19, IL-22, and metalloproteinase 1 (MMP-1). The results confirm the destructive effect of HY-PDT and the immunomodulatory effects of sublethal doses on the selected skin cells, depending on the concentration of HY and the light doses. No statistically significant differences were noted in IL-2 and IL-10 concentration after HY-PDT for HEKa and HDFa lines. After using HY-PDT, the concentration of IL-8, MMP-1, IL-22, and IL-11 significantly decreased in the HEKa line. Moreover, the concentration of IL-19 and MMP-1 significantly decreased in the HDFa line. The concentration of IL-11 in the HDFa line after using only the HY, without the light, increased but decreased after HY-PDT. Our experiment confirmed that HY-PDT has not only a cytotoxic effect but, used in sublethal doses, also presents immunomodulatory properties. These may be an advantage of HY-PDT when used in the treatment of persistent skin inflammation, connected with the release of pro-inflammatory cytokines resistant to conventional treatment methods.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Doctoral School of the Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
9
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Qu Z, Lin X, Liu M, Wang J, Wang F, Zhang B, Shen L, Wang Z. Clinical efficacy analysis of 5-aminolevulinic acid photodynamic therapy for vulvar lichen sclerosus. Photodiagnosis Photodyn Ther 2024; 46:104035. [PMID: 38442799 DOI: 10.1016/j.pdpdt.2024.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE The purpose of this study is to analyze the efficacy of photodynamic therapy in the treatment of vulvar lichen sclerosus who do not respond to topical glucocorticoid therapy, analyze whether there are factors that affect the efficacy, and identify adverse reactions to the treatment. METHOD This retrospective study included 42 patients with vulval lichen sclerosis treated with ALA-PDT. Basic data of all patients were collected, and the clinical symptoms and signs of the patients before treatment were evaluated. After one year of treatment, the clinical efficacy was evaluated and analyzed whether there were any factors that affected the treatment effect. RESULT One year after the ALA-PDT treatment, the clinical effective rate was 64.29 % (27/42), the general effective rate was 19.05 % (8/42), the ineffective rate was 4.76 % (2/42), and the recurrence rate was 11.90 % (5/42). There was no correlation between menopause, number of births given, body mass index, duration of disease, treatment times and treatment effect. For patients with severe itching and atrophy, PDT was less effective. Adverse effects were minimal and no structural complications were reported. CONCLUSION ALA-PDT can obviously alleviate itching in VLS patients, improve skin elasticity, skin color and reduce lesion area. ALA-PDT for VLS has a low recurrence rate and few side effects.
Collapse
Affiliation(s)
- Zhongyu Qu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xueyan Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ming Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Fei Wang
- Department of Eastern Hospital Emergency Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhifeng Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
11
|
Abd-El-Azim H, Abbas H, El Sayed N, Mousa MR, Elbardisy HM, Zewail M. Hypericin emulsomes combined with hollow microneedles as a non-invasive photodynamic platform for rheumatoid arthritis treatment. Int J Pharm 2024; 653:123876. [PMID: 38331331 DOI: 10.1016/j.ijpharm.2024.123876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease that severely affects joint function. Despite the variability of treatment protocols, all of them are associated with severe side effects that compromise patient compliance. The main aim of the current study is to prepare localized effective RA treatment with reduced side effects by combining nanoencapsulation, photodynamic therapy (PDT) and hollow microneedles (Ho-MNs) to maximize the pharmacological effects of hypericin (HYP). To attain this, HYP-loaded emulsomes (EMLs) were prepared, characterized and administered through intradermal injection using AdminPen™ Ho-MNs combined with PDT in rats with an adjuvant-induced RA model. The prepared EMLs had a spherical shape and particle size was about 93.46 nm with an absolute entrapment efficiency. Moreover, confocal imaging indicated the interesting capability of Ho-MNs to deposit the HYP EMLs to a depth reaching 1560 µm into the subcutaneous tissue. In vivo, study results demonstrated that the group treated with HYP EMLs through Ho-MNs combined with PDT had no significant differences in joint diameter, TNF-α, IL1, HO-1, NRF2 and SD levels compared with the negative control group. Similarly, rats treated with the combination of HYP EMLs, Ho-MNs and PDT showed superior joint healing efficacy compared with the groups treated with HYP EMLs in dark, HYP ointment or HYP in microneedles in histopathological examination. These findings highlight the promising potential of photoactivated HYP EMLs when combined with Ho-MNs technology for RA management. The presented therapeutic EMLs-MNs platform could serve as a powerful game-changer in the development of future localized RA treatments.
Collapse
Affiliation(s)
- Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Hadil M Elbardisy
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
12
|
He J, Weng T, Ba W, Liang X, Yang Y, Li C. Photodynamic therapy for cutaneous inflammatory pseudotumour: A case report. Photodiagnosis Photodyn Ther 2024; 45:103962. [PMID: 38211778 DOI: 10.1016/j.pdpdt.2024.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Inflammatory pseudotumour (IP) is a rare proliferative disease characterized by a dense infiltrate of plasma cells, lymphocytes, eosinophils and neutrophils in the fibrous stroma. It primarily affects the lungs of pediatric patients or young adults. Cutaneous IP is an extremely rare condition, with limited documentation in the English literature. In this case report, we presented an unusual instance of a 62-year-old male endured recalcitrant cutaneous IP for 8 years and exhibited poor response to topical glucocorticoid therapy, as well as intralesional injections of pingyangmycin and/or corticosteroid. Notably, after undergoing four sessions of 5-aminolevulinic acid photodynamic therapy (ALA-PDT), the patient experienced a significant reduction in erythema and nodules. This observation suggests that ALA-PDT may represent a promising and safe treatment option for cutaneous IP.
Collapse
Affiliation(s)
- Juan He
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Tengyu Weng
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wei Ba
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Xiaoqiang Liang
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yi Yang
- Department of Dermatology, The Third Medical Center of the Chinese People's Liberation Army, Beijing, 100853, PR China.
| | - Chengxin Li
- Department of Dermatology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China.
| |
Collapse
|
13
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
14
|
Woźniak M, Nowak-Perlak M. Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. Int J Mol Sci 2023; 24:16897. [PMID: 38069219 PMCID: PMC10707231 DOI: 10.3390/ijms242316897] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 μM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
15
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
17
|
López Sanz P, Faura Berruga C, Guerrero Ramírez C, Manso Córdoba S, Alfaro Martínez ME, García Vázquez A. Daylight photodynamic therapy in necrobiosis lipoidica: A promising treatment? PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:294-295. [PMID: 35996345 DOI: 10.1111/phpp.12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 05/10/2023]
Affiliation(s)
- Pablo López Sanz
- Department of Dermatology, University General Hospital of Albacete, Albacete, Spain
| | | | | | - Silvia Manso Córdoba
- Department of Dermatology, University General Hospital of Albacete, Albacete, Spain
| | | | | |
Collapse
|
18
|
Lu Y, Sun W, Du J, Fan J, Peng X. Immuno-photodynamic Therapy (IPDT): Organic Photosensitizers and Their Application in Cancer Ablation. JACS AU 2023; 3:682-699. [PMID: 37006765 PMCID: PMC10052235 DOI: 10.1021/jacsau.2c00591] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Photosensitizer-based photodynamic therapy (PDT) has been considered as a promising modality for fighting diverse types of cancers. PDT directly inhibits local tumors by a minimally invasive strategy, but it seems to be incapable of achieving complete eradication and fails to prevent metastasis and recurrence. Recently, increasing events proved that PDT was associated with immunotherapy by triggering immunogenic cell death (ICD). Upon a specific wavelength of light irradiation, the photosensitizers will turn the surrounding oxygen molecules into cytotoxic reactive oxygen species (ROS) for killing the cancer cells. Simultaneously, the dying tumor cells release tumor-associated antigens, which could improve immunogenicity to activate immune cells. However, the progressively enhanced immunity is typically limited by the intrinsic immunosuppressive tumor microenvironment (TME). To overcome this obstacle, immuno-photodynamic therapy (IPDT) has come to be one of the most beneficial strategies, which takes advantage of PDT to stimulate the immune response and unite immunotherapy for inducing immune-OFF tumors to immune-ON ones, to achieve systemic immune response and prevent cancer recurrence. In this Perspective, we provide a review of recent advances in organic photosensitizer-based IPDT. The general process of immune responses triggered by photosensitizers (PSs) and how to enhance the antitumor immune pathway by modifying the chemical structure or conjugating with a targeting component was discussed. In addition, future perspectives and challenges associated with IPDT strategies are also discussed. We hope this Perspective could inspire more innovative ideas and provide executable strategies for future developments in the war against cancer.
Collapse
Affiliation(s)
- Yang Lu
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
19
|
Heat Shock Protein Inhibitors Show Synergistic Antibacterial Effects with Photodynamic Therapy on Caries-Related Streptococci In Vitro and In Vivo. mSphere 2023; 8:e0067922. [PMID: 36853046 PMCID: PMC10117063 DOI: 10.1128/msphere.00679-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Caries are chronic infections in which the cariogenic biofilm plays a critical role in disease occurrence and progression. Photodynamic therapy (PDT) is a new effective treatment that is receiving wide attention in the antibacterial field, but it can lead to the upregulation of heat shock proteins (HSPs), which enhances bacterial resistance. Herein, we incorporated HSP inhibitors with PDT to evaluate the effect on Streptococcus mutans, Streptococcus sobrinus, and Streptococcus sanguinis under planktonic conditions and on cariogenic biofilms. Additionally, a model of caries was established in 2-week-old rats, and anticaries properties were evaluated by Keyes' scoring. Importantly, the combination of HSP inhibitors and PDT had outstanding efficiency in inhibiting the growth of tested Streptococcus strains and the formation of either monomicrobial or multispecies biofilms in vitro. In addition, the quantity of colonized streptococci and the severity of carious lesions were also distinctly suppressed in vivo. Overall, the synergistic application of HSP inhibitors and PDT has promising potential in the prevention and treatment of dental caries. IMPORTANCE Effective therapies for the prevention and control of caries are urgently needed. Cariogenic streptococci play a key role in the occurrence and progression of caries. Recently, photodynamic therapy has been demonstrated to have good antibacterial efficiency, but it can cause a heat shock response in bacteria, which may weaken its practical effects. We indicate here an effective therapeutic strategy of combining heat shock protein inhibitors and photodynamic therapy, which shows excellent inhibition toward three dominant streptococci related to caries and suppression of carious progression in a rat model. Further development for clinical application is promising.
Collapse
|
20
|
Patil S, Mustaq S, Hosmani J, Khan ZA, Yadalam PK, Ahmed ZH, Bhandi S, Awan KH. Advancement in therapeutic strategies for immune-mediated oral diseases. Dis Mon 2023; 69:101352. [PMID: 35339251 DOI: 10.1016/j.disamonth.2022.101352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Immune-mediated diseases are a diverse group of conditions characterized by alteration of cellular homeostasis and inflammation triggered by dysregulation of the normal immune response. Several immune-mediated diseases exhibit oral signs and symptoms. Traditionally, these conditions are treated with corticosteroids or immunosuppressive agents, including azathioprine, cyclophosphamide, and thalidomide. Recent research into the developmental pathways of these diseases has led to the exploration of novel approaches in treatment. This review examines newer treatment modalities for the management of immune-mediated diseases with oral presentations. Topical calcineurin inhibitors (TCIs) such as tacrolimus and pimecrolimus have been employed successfully in managing oral lichen planus and pemphigus vulgaris. Biologic agents, comprising monoclonal antibodies, fusion proteins, and recombinant cytokines, can provide targeted therapy with fewer adverse effects. Neutraceutical agents comprising aloe vera, curcumin, and honey are commonly used in traditional medicine and offer a holistic approach. They may have a place as adjuvants to current standard therapeutic protocols. Photodynamic therapy (PDT) and low-level laser therapy (LLLT) utilize a specific wavelength of light to achieve desired cellular change. While the use of PDT in immune-mediated diseases is contentious, LLLT has shown positive results. Newer therapeutic modalities involve kinase inhibitors, S1P1 receptor modulators, MSCs, and iRNA providing targeted treatment of specific diseases.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Jagadish Hosmani
- Oral Pathology Division, Department of Dental Sciences, College of Dentistry,King Khalid University, Abha, Saudi Arabia
| | - Zafar Ali Khan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shilpa Bhandi
- Department of Restorative Dental Science, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States.
| |
Collapse
|
21
|
The Effect of 5-Aminolevulinic Acid Photodynamic Therapy in Promoting Pyroptosis of HPV-Infected Cells. PHOTONICS 2022. [DOI: 10.3390/photonics9060408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-aminolevulinic acid photodynamic therapy (ALA-PDT) is highly effective in the treatment of condyloma acuminata (CA). Previous research has indicated that ALA-PDT could induce cell death by different mechanisms, including apoptosis and autophagy, but the role of pyroptosis in ALA-PDT remains uncertain. Thus, this study aimed to explore whether pyroptosis is a potential mechanism of ALA-PDT killing human papillomavirus (HPV) infected cells. HPV-positive HeLa cells were exposed to ALA-PDT, then cell viability assay, lactate dehydrogenase release (LDH) assay, detection of reactive oxygen species (ROS), quantitative real-time PCR (qPCR), and western blot were used to evaluate pyroptosis induced by ALA-PDT. Results suggested that ALA-PDT enhanced the expression of NLRP3, caspase-1, GSDMD, and the production of inflammatory cytokines such as IL-1β and IL-18. In addition, ALA-PDT induced the production of ROS and led to the destruction of the cell membrane. The inhibition of pyroptosis reduced the killing of HeLa cells by ALA-PDT. This study demonstrates that ALA-PDT induces pyroptosis in HPV-positive cells, which provides some explanation for the mechanism of ALA-PDT to treat CA and HPV infection-related diseases.
Collapse
|
22
|
Li A, Fang R, Mao X, Sun Q. Photodynamic therapy in the treatment of rosacea: a systematic review. Photodiagnosis Photodyn Ther 2022; 38:102875. [DOI: 10.1016/j.pdpdt.2022.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
23
|
Portugal I, Jain S, Severino P, Priefer R. Micro- and Nano-Based Transdermal Delivery Systems of Photosensitizing Drugs for the Treatment of Cutaneous Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14080772. [PMID: 34451868 PMCID: PMC8401127 DOI: 10.3390/ph14080772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy is one of the more unique cancer treatment options available in today’s arsenal against this devastating disease. It has historically been explored in cutaneous lesions due to the possibility of focal/specific effects and minimization of adverse events. Advances in drug delivery have mostly been based on biomaterials, such as liposomal and hybrid lipoidal vesicles, nanoemulsions, microneedling, and laser-assisted photosensitizer delivery systems. This review summarizes the most promising approaches to enhancing the photosensitizers’ transdermal delivery efficacy for the photodynamic treatment for cutaneous pre-cancerous lesions and skin cancers. Additionally, discussions on strategies and advantages in these approaches, as well as summarized challenges, perspectives, and translational potential for future applications, will be discussed.
Collapse
Affiliation(s)
- Isabella Portugal
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Patrícia Severino
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil; (I.P.); (S.J.); (P.S.)
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, University, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|