1
|
Ferreira S, Grenho L, Fernandes MH, Lima SAC. Photoactivated Curcumin-Loaded Lipid Nanoparticles in Hydrogel: A Cutting-Edge Intracanal Medicament for Advanced Endodontic Therapy. Gels 2025; 11:308. [PMID: 40422328 DOI: 10.3390/gels11050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Intracanal reinfections continue to pose a major challenge in endodontic treatment. Photodynamic therapy has emerged as a promising antimicrobial strategy. Regarding this, curcumin (CUR), a natural photosensitizer, shows potential in this context, but its application is hampered by poor solubility and rapid degradation. This study aimed to develop and characterize a CUR-loaded nanoparticle-enriched hydrogel to enhance its stability, sustain its release, and evaluate its antimicrobial efficacy upon photoactivation (PhAc). Curcumin-loaded nanoparticles were synthesized and incorporated into a hydrogel matrix, followed by characterization using scanning electron microscopy, Fourier-transform infrared spectroscopy, in vitro CUR release studies, and rheological analysis. Antibiofilm activity against Enterococcus faecalis was assessed under both photoactivated and non-photoactivated conditions. Cytocompatibility was analyzed through fibroblast viability assays and fluorescence staining. The CUR-containing hydrogel demonstrated a sustained release profile extending beyond 72 h. Rheological studies confirmed its shear-thinning behavior, ensuring injectability even after post-photoactivation. Antibiofilm assays revealed a significant reduction in E. faecalis biofilms, with PhAc formulations exhibiting markedly enhanced antibacterial efficacy compared to their non-PhAc counterparts. Cytocompatibility assays confirmed that all formulations, including those subjected to PDT, preserved fibroblast viability, indicating biocompatibility suitable for clinical use. In sum, the CUR-containing hydrogel exhibits properties that support its potential as an effective intracanal therapeutic, combining antimicrobial and photodynamic effects to help prevent reinfections in endodontic treatments.
Collapse
Affiliation(s)
- Sónia Ferreira
- Department of Dental Sciences, IUCS-CESPU: University Institute of Health Sciences-Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Liliana Grenho
- BoneLab, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Maria H Fernandes
- BoneLab, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Sofia A Costa Lima
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Pattini VC, Polaquini CR, Lemes TH, Brizzotti-Mazuchi NS, Sardi JDCO, Paziani MH, Kress MRVZ, de Almeida MTG, Regasini LO. Antifungal activity of 3,3'-dimethoxycurcumin (DMC) against dermatophytes and Candida species. Lett Appl Microbiol 2024; 77:ovae019. [PMID: 38499446 DOI: 10.1093/lambio/ovae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.
Collapse
Affiliation(s)
- Veridianna Camilo Pattini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | | | | | - Mário Henrique Paziani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | - Marcia Regina von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | | | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|