1
|
Zhuge D, Li L, Sun X, Liang H, Jin C, Lu A, Gao W, Zhong Y, Li W, Chen S, Wang F, Yan L, Meng W, Lin X, Zhang X, Liu Y, Li Y, Zhao Y, Zhang X, Chen M, Chen Y. Red blood cell membrane-derived phototherapeutic nanodiscs: A new platform for enhanced phototherapy. J Control Release 2025; 384:113873. [PMID: 40412658 DOI: 10.1016/j.jconrel.2025.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Phototherapy holds great potential for treating cancer and infections but faces limitations related to photosensitizer accumulation, tissue penetration, and diminished photo-conversion efficiency, particularly in deep-seated tumors and infections. Here, a biomimetic phototherapeutic nanodisc platform consisting of erythrocyte membranes and the photosensitizer IR780 is developed. With the advantages of the ultra-small size and exceptional biosafety of cell membrane-derived nanodiscs, this platform facilitates efficient accumulation and deep tissue penetration at disease sites. Upon near-infrared (NIR) irradiation, IR780 delivered via the nanodisc exhibits enhanced photothermal conversion efficiency, markedly inhibiting tumor growth in an orthotopic 4T1 breast cancer model and reducing bacterial load in a methicillin-resistant Staphylococcus aureus (MRSA) skin infection model. Furthermore, the nanodisc platform demonstrates outstanding biocompatibility in mice. In conclusion, this nanodisc system significantly extends the functional potential of cellular nanodiscs, presenting a promising strategy to address the challenges of photosensitizer delivery and biosafety in phototherapeutic applications.
Collapse
Affiliation(s)
- Deli Zhuge
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Li Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueying Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Hui Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Chenjie Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ailing Lu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Wenli Gao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China
| | - Yutong Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenlu Li
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Sihao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weiyang Meng
- Department of Emergency Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoji Lin
- Department of Chemotherapy and Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xufei Zhang
- Experimental Animal Center, Wenzhou Medical University, Wenzhou 325027, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China.
| | - Xiang Zhang
- Department of Clinical Laboratory, The Fifth Hospital of Rui'an, Rui'an 325000, China.
| | - Mengchun Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China.
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Chen CY, Hope Gadia Moreno RL, Wang PY, Nguyen TS, Wu JL, Chen KH, Chen CH, Lin CY, Wong PC. 3D-Printable Photothermal and Temperature-Controlled Polycaprolactone Scaffolds Incorporating Gold Plasmonic Blackbodies for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29455-29468. [PMID: 40356297 PMCID: PMC12100601 DOI: 10.1021/acsami.5c05707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Three-dimensional (3D) printing technology has revolutionized the design and fabrication of bone scaffolds, offering precise and customizable solutions for bone tissue engineering. In this study, we developed polycaprolactone (PCL) scaffolds that incorporated gold plasmonic blackbodies (AuPBs) to harness photothermal properties for temperature-controlled bone regeneration. The AuPB-PCL scaffolds demonstrated enhanced mechanical strength, a tunable thermal response under near-infrared (NIR) laser irradiation, and improved osteogenic potential. Photothermal stimulation effectively modulated cellular responses, promoting osteoblast proliferation, alkaline phosphatase (ALP) activity, and mineralization. Notably, mild hyperthermia (39-41 °C) induced by laser irradiation optimized osteogenesis, while excessive temperatures (≥42.5 °C) impaired cellular function due to mitochondrial stress and oxidative damage. These findings highlight the potential of AuPB-PCL scaffolds for controlled photothermal bone regeneration, offering a promising strategy for precise, completely noninvasive stimulation of bone repair.
Collapse
Affiliation(s)
- Chieh-Ying Chen
- Graduate
Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Ruaina Lily Hope Gadia Moreno
- Graduate
Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Po-Yao Wang
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei11031, Taiwan
- Department
of Orthopedics, Taipei Medical University
Hospital, Taipei11031, Taiwan
| | - Thanh Sang Nguyen
- International
Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
- Department
of Trauma, Hue Central Hospital, Hue530000, Vietnam
| | - Jia-Lin Wu
- Department
of Orthopedics, Taipei Medical University
Hospital, Taipei11031, Taiwan
- Department
of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
- Orthopedics
Research Center, Taipei Medical University
Hospital, Taipei11031, Taiwan
- Centers
for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei11096, Taiwan
| | - Kuan-Hao Chen
- Department
of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
- Department
of Orthopedics, Shuang Ho Hospital, Taipei
Medical University, New Taipei23561, Taiwan
| | - Chih-Hwa Chen
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Department
of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
- Department
of Orthopedics, Shuang Ho Hospital, Taipei
Medical University, New Taipei23561, Taiwan
| | - Chia-Ying Lin
- Convergent Bioscience and Technology Institute, Department of Biomedical
Engineering and Informatics, Indiana University, Indianapolis, Indiana46202, United States
| | - Pei-Chun Wong
- Graduate
Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
3
|
Moreira AF, Filipe HAL, Miguel SP, Ribeiro MJ, Coutinho P. Recent advances in smart gold nanoparticles for photothermal therapy. Nanomedicine (Lond) 2025:1-15. [PMID: 40329458 DOI: 10.1080/17435889.2025.2500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Gold nanoparticles (AuNPs) possess unique properties, including low toxicity and excellent optical characteristics, making them highly appealing for biomedical applications. The plasmonic photothermal effect of AuNPs has been explored to trigger localized hyperthermia. Four commonly explored gold nanoparticles (spheres, rods, stars, and cages) are produced and optimized to present the localized surface plasmon resonance effect in the near-infrared region, exploiting the increased penetration in the human body. Additionally, the production of hybrid AuNPs, combining them with other materials, such as silica, graphene, zinc oxide, polymers, and small molecules has been explored to amplify the photothermal effect (T ≥ 45ºC). This review provides an overview of AuNPs' application in photothermal therapy, describing the general synthesis processes and the main particle parameters that affect their application in photothermal therapy, including the hybrid nanomaterials. Associated with this rapid progress, surface functionalization can also improve colloidal stability, safety, and therapeutic outcomes. In this regard, we also highlight the emerging trend of applying cell-derived vesicles as biomimetic coatings, capable of evading immune recognition, increasing blood circulation, and targeting specific tissues. In addition, the challenges and future developments of AuNPs for accelerating the clinical translations are discussed in light of their therapeutic and theragnostic potential.
Collapse
Affiliation(s)
- André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Hugo A L Filipe
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Maximiano J Ribeiro
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| |
Collapse
|
4
|
Tan D, Long H, Du M, Yu J, Sun X, Wang Y, Zheng J, Chen H, Gao Y. Fabrication of a nanoplatform based on chitosan and hyaluronic acid containing alkyne-functionalized gold nanoparticles for tumor targeted synergistic phototherapy. Int J Biol Macromol 2025; 309:142974. [PMID: 40210056 DOI: 10.1016/j.ijbiomac.2025.142974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/16/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The physical and chemical properties of gold nanoparticles can significantly influence their anti-tumor efficacy. Streamlining synthesis methods to modulate these properties and enhance therapeutic effects could facilitate their translation into clinical applications. This study presents a new approach to synthesize small alkynyl-modified gold nanoparticles (Alk-GNP) at room temperature using sodium citrate and propiolic acid (PA) to reduce chloroauric acid. The resulting Alk-GNP, approximately 11 nm in size with narrow dispersion, contrasts with larger gold nanoparticles (GNP) synthesized by the classical Turkevich method using boiling water. Subsequently, a round composite (CHAM) was developed using chitosan and hyaluronic acid to co-deliver Alk-GNP and the photosensitizer methylene blue for synergistic treatment. CHAM showed excellent stability and strong CD44-positive tumor targeting capabilities. It significantly boosted photothermal activity and reactive oxygen species generation compared to current GNP-based formulations. In tumor-bearing mouse models, CHAM effectively localized in tumor tissue and exhibited potent photothermal and photodynamic therapeutic effects to inhibit tumor growth while ensuring safety. The robust data presented in this study supports the potential translation of this approach, offering a simplified preparation process and improved tumor treatment efficacy.
Collapse
Affiliation(s)
- Ding Tan
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haixin Long
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Manyi Du
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Jing Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Jianping Zheng
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Yang Y, Wang X, Hu Y, Liu Z, Ma X, Feng F, Zheng F, Guo X, Liu W, Liao W, Han L. Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles. J Pharm Anal 2025; 15:101152. [PMID: 40115811 PMCID: PMC11925168 DOI: 10.1016/j.jpha.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 03/23/2025] Open
Abstract
Bacterial infection is a major threat to global public health, and can cause serious diseases such as bacterial skin infection and foodborne diseases. It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time. In this work, we developed a 4-mercaptophenylboronic acid gold nanoparticles (4-MPBA-AuNPs)-functionalized hydrogel microneedle (MPBA-H-MN) for bacteria detection in skin interstitial fluid. MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min. Surface enhanced Raman spectroscopy (SERS) detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria. Overall, the capture efficiency of this method exceeded 50%. In the concentration range of 1 × 107 to 1 × 1010 colony-forming units/mL (CFU/mL), the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration. Using random forest (RF)-based machine learning, bacteria were effectively distinguished with an accuracy of 97.87%. In addition, the harmless disposal of used MNs by photothermal ablation was convenient, environmentally friendly, and inexpensive. This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingyu Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Yexin Hu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhongyao Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiao Ma
- Gansu Institute for Drug Control, Lanzhou, Gansu, 730000, China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinlin Guo
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
- Zhejiang Center for Safety Study of Drug Substances (Industrial Technology Innovation Platform), Hangzhou, 310018, China
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Eker F, Akdaşçi E, Duman H, Bechelany M, Karav S. Gold Nanoparticles in Nanomedicine: Unique Properties and Therapeutic Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1854. [PMID: 39591094 PMCID: PMC11597456 DOI: 10.3390/nano14221854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) have demonstrated significance in several important fields, including drug delivery and anticancer research, due to their unique properties. Gold NPs possess significant optical characteristics that enhance their application in biosensor development for diagnosis, in photothermal and photodynamic therapies for anticancer treatment, and in targeted drug delivery and bioimaging. The broad surface modification possibilities of gold NPs have been utilized in the delivery of various molecules, including nucleic acids, drugs, and proteins. Moreover, gold NPs possess strong localized surface plasmon resonance (LSPR) properties, facilitating their use in surface-enhanced Raman scattering for precise and efficient biomolecule detection. These optical properties are extensively utilized in anticancer research. Both photothermal and photodynamic therapies show significant results in anticancer treatments using gold NPs. Additionally, the properties of gold NPs demonstrate potential in other biological areas, particularly in antimicrobial activity. In addition to delivering antigens, peptides, and antibiotics to enhance antimicrobial activity, gold NPs can penetrate cell membranes and induce apoptosis through various intracellular mechanisms. Among other types of metal NPs, gold NPs show more tolerable toxicity capacity, supporting their application in wide-ranging areas. Gold NPs hold a special position in nanomaterial research, offering limited toxicity and unique properties. This review aims to address recently highlighted applications and the current status of gold NP research and to discuss their future in nanomedicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey; (F.E.); (E.A.); (H.D.)
| |
Collapse
|
7
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
8
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
9
|
Fang Q, Hong C, Liu Z, Pan Y, Lin J, Zheng J, Zhang J, Chen T, Ma X, Wu A. Oxygen Vacancy Defect Enhanced NIR-II Photothermal Performance of BiO xCl Nanosheets for Combined Phototherapy of Cancer Guided by Multimodal Imaging. Adv Healthc Mater 2024; 13:e2303200. [PMID: 38183410 DOI: 10.1002/adhm.202303200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Narrow photo-absorption range and low carrier utilization are significant barriers that restrict the antitumor efficiency of 2D bismuth oxyhalide (BiOX, X = Cl, Br, I) nanosheets (NSs). Introducing oxygen vacancy (OV) defects can expand the absorption range and improve carrier utilization, which are crucial but also challenging. In this study, a series of BiOxCl NSs with different OV defect concentrations (x = 1, 0.7, 0.5) is developed, which shows full spectrum absorption and strong absorption in the second near-infrared region (NIR-II). Density functional theory calculations are utilized to calculate the crystal structure and density states of BiOxCl, which confirm that part of the carriers is separated by OV enhanced internal electric field to improve carrier utilization. The carriers without redox reaction can be trapped in the OV, leading to great majority of photo-generated carriers promoting the photothermal performance. Triggered by single NIR-II (1064 nm), BiOxCl NSs' bidirectional efficient utilization of carriers achieves synchronously combined phototherapy, leading to enhanced tumor ablation and multimodal diagnostic in vitro and vivo. It is thus believed that this work provides an innovative strategy to design and construct nanoplatforms of indirect band gap semiconductors for clinical phototheranostics.
Collapse
Affiliation(s)
- Qianlan Fang
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengyuan Hong
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhusheng Liu
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
| | - Yuning Pan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| | - Jie Lin
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
| | - Jianjun Zheng
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Jingfeng Zhang
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Tianxiang Chen
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Xuehua Ma
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 315010, P. R. China
| | - Aiguo Wu
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, China
| |
Collapse
|
10
|
Nouizi F, Algarawi M, Erkol H, Gulsen G. Gold nanoparticle-mediated photothermal therapy guidance with multi-wavelength photomagnetic imaging. Photodiagnosis Photodyn Ther 2024; 45:103956. [PMID: 38159834 PMCID: PMC11396545 DOI: 10.1016/j.pdpdt.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Difficulty in heating tumors with high spatial selectivity while protecting surrounding healthy tissues from thermal harm is a challenge for cancer photothermal treatment (PTT). To mitigate this problem, PTT mediated by photothermal agents (PTAs) has been established as a potential therapeutic technique to boost selectivity and reduce damage to surrounding healthy tissues. Various gold nanoparticles (AuNP) have been effectively utilized as PTAs, mainly using strategies to target cancerous tissue and increase selective thermal damage. Meanwhile, imaging can be used in tandem to monitor the AuNP distribution and guide the PTT. Mainly, the parameters impacting the induced temperature can be determined using simulation tools before treatment for effective PTT. However, accurate simulations can only be performed if the amount of AuNPs accumulated in the tumor is known. This study introduces Photo-Magnetic Imaging (PMI), which can appropriately recover the AuNP concentration to guide the PTT. Using multi-wavelength measurements, PMI can provide AuNP concentration based on their distinct absorption spectra. Tissue-simulating phantom studies are conducted to demonstrate the potential of PMI in recovering AuNP concentration for PTT planning. The recovered AuNP concentration is used to model the temperature increase accurately in a small inclusion representing tumor using a multiphysics solver that takes into account the light propagation and heat diffusion in turbid media.
Collapse
Affiliation(s)
- Farouk Nouizi
- Department of Radiological Sciences, University of California Irvine, USA
| | - Maha Algarawi
- Department of Physics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia
| | - Hakan Erkol
- Department of Physics, Bogazici University, Turkey
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California Irvine, USA.
| |
Collapse
|
11
|
Zhang Z, Miao G, Lu L, Yin H, Wang Y, Wang B, Pan R, Zheng C, Jin X. Crucial physicochemical factors mediating mitochondrial toxicity of nanoparticles at noncytotoxic concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168211. [PMID: 37918742 DOI: 10.1016/j.scitotenv.2023.168211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Nanomaterials have been extensively applied in multiple industries, among which silver nanoparticles (AgNPs), silicon dioxide nanoparticles (SiNPs), and gold nanoparticles (AuNPs) have become representative of widely consumed NPs. Limited knowledge is available regarding the subcellular responses of NPs with different physicochemical properties, i.e. material type and size, under the noncytotoxic concentrations. Macrophages are important sensitive cells exposed to NPs, and mitochondria are sensitive organelles that respond at the subcellular level. Herein, we found that sublethal concentrations of AgNPs and SiNPs, not AuNPs, decreased the mitochondrial membrane potential (MMP) and tubular mitochondria, and further resulted in an increase of ROS level and a decrease of ATP generation. AgNPs and SiNPs can also disturb mitochondrial dynamics manifested as increasing Mfn2 expression and decreasing Drp1 expression. Further assessments for mitochondrial function showed that AgNPs and SiNPs exposure led to a decrease in the gene expressions related to complex I (Ndufa8 and Ndufs2), complex III (Uqcrc2 and Uqcrfs1), complex IV (Cox6b1), and activity of complex I, suggesting their potential roles in impairing cellular respiration. In terms of the effects of NPs with different sizes, stronger toxicity was observed in smaller-sized nanoparticles. Among the above mitochondrial changes, we identified that ROS, ATP, MMP, tubular mitochondria, and expression of Drp1 were relatively sensitive indicators in subcellular response to NPs. With the above sensitive indicators, the comparison of heterogeneity between material type and size of the NPs showed that material type occupied a main influence on subcellular mitochondrial effects. Our finding provided important data on the potential subcellular risks of NPs, and indicated the vital role of material type for a better understanding of the nanomaterial biological safety.
Collapse
Affiliation(s)
- Ze Zhang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Gan Miao
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Hao Yin
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Yingzhu Wang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Baoqiang Wang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Ruonan Pan
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Chuer Zheng
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Liu L, Liu YX, Zhong H, Li XR, Jun YL, Wang QL, Ding LS, Cheng ZP, Qian HY. Folic acid conjugated palygorskite/Au hybrid microgels: Temperature, pH and light triple-responsive and its application in drug delivery. Colloids Surf B Biointerfaces 2023; 229:113432. [PMID: 37422992 DOI: 10.1016/j.colsurfb.2023.113432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Herein, folic acid conjugated poly (NIPAM-co-functional palygorskite-Au-co-acrylic acid) (FA-PNFA) hybrid microgels were fabricated by emulsion polymerization. The introduction of acrylic acid can increase the low critical solution temperature (LCST) of FA-PNFA from 36 °C at pH 5.5-42 °C at pH 7.4. Doxorubicin hydrochloride (DOX) was chosen as the load drug, the results show that the DOX release behavior is driven by temperature, pH and light. Cumulative drug release rate can reach 74 % at 37 °C and pH 5.5 while only 20 % at 37 °C and pH 7.4, which effectively avoided the early leakage of the drug. In addition, by exposing FA-PNFA hybrid microgels to laser irradiation, the cumulative release rate was increased by 5 % compared to the release rate under dark conditions. Functional palygorskite-Au as physical crosslinkers not only improves the drug loading content of microgels but also promotes the release of DOX through light drive. Methyl thiazolyl tetrazolium bromide (MTT) assay demonstrated that the FA-PNFA are nontoxic up to 200 μg mL-1 towards 4T1 breast cancer cell. Meanwhile, DOX-loaded FA-PNFA show more significant cytotoxicity than the free DOX. Confocal laser scanning microscope (CLSM) revealed that the DOX-loaded FA-PNFA could be efficiently taken by 4T1 breast cancer cells. FA-PNFA hybrid microgels not only improve the LCST of PNIPAM, but also endow the microgels with photostimulation responsiveness, which can release drugs in response to the triple stimulation response of temperature, pH and light, thus effectively reducing the activity of cancer cells, making them more promising for wider medical applications.
Collapse
Affiliation(s)
- Lei Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China
| | - Yi-Xin Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China
| | - Hui Zhong
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, PR China.
| | - Xiao-Rong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China.
| | - Ya-Li Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Qi-Long Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Lian-Shu Ding
- Department of Central Laboratory, The Affiliated Huaian No.1 Peopele's Hospital, Nanjing Medical University, Huai'an 223300, PR China
| | - Zhi-Peng Cheng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China
| | - Hai-Yan Qian
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210000, PR China.
| |
Collapse
|
14
|
Liu X, Liu H, Wang Y, Zheng X, Xu H, Ding J, Sun J, Jiang T, Li Q, Liu Y. A facile approach for sulphur and nitrogen co-doped carbon nanodots to improve photothermal eradication of drug-resistant bacteria. Biochem Biophys Res Commun 2023; 671:301-308. [PMID: 37327701 DOI: 10.1016/j.bbrc.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we produced S, N co-doped CNDs (SN@CNDs) by using dimethyl sulfoxide (DMSO) and formamide (FA) as single sources of S and N, respectively. We varied the S/N ratios by adjusting the volume ratios of DMSO and FA and investigated their effect on the red-shift of the CNDs' absorption peak. Our findings demonstrate that SN@CNDs synthesized using a volume ratio of 5:6 between DMSO and FA exhibit the most significant absorption peak redshift and enhanced near-infrared absorption performance. Based on comparative analysis of the particle size, surface charge, and fluorescence spectrum of the S@CNDs, N@CNDs, and SN@CNDs, we propose a possible mechanism to explain the change of optical properties of CNDs due to S, N doping. Co-doping creates a more uniform and smaller band gap, resulting in a shift of the Fermi level and a change in energy dissipation from radioactive to non-radiative decay. Importantly, the as-prepared SN@CNDs exhibited a photothermal conversion efficiency of 51.36% at 808 nm and demonstrated exceptional photokilling effects against drug-resistant bacteria in both in vitro and in vivo experiments. Our facile method for synthesizing S and N co-doped CNDs can be extended to the preparation of other S and N co-doped nanomaterials, potentially improving their performance.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Huaze Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Xueliang Zheng
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Juan Ding
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| | - Qin Li
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| | - Yang Liu
- School of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
15
|
Liu M, Yuan J, Wang G, Ni N, Lv Q, Liu S, Gong Y, Zhao X, Wang X, Sun X. Shape programmable T1- T2 dual-mode MRI nanoprobes for cancer theranostics. NANOSCALE 2023; 15:4694-4724. [PMID: 36786157 DOI: 10.1039/d2nr07009j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The shape effect is an important parameter in the design of novel nanomaterials. Engineering the shape of nanomaterials is an effective strategy for optimizing their bioactive performance. Nanomaterials with a unique shape are beneficial to blood circulation, tumor targeting, cell uptake, and even improved magnetism properties. Therefore, magnetic resonance imaging (MRI) nanoprobes with different shapes have been extensively focused on in recent years. Different from other multimodal imaging techniques, dual-mode MRI can provide imaging simultaneously by a single instrument, which can avoid differences in penetration depth, and the spatial and temporal resolution of multiple imaging devices, and ensure the accurate matching of spatial and temporal imaging parameters for the precise diagnosis of early tumors. This review summarizes the latest developments of nanomaterials with various shapes for T1-T2 dual-mode MRI, and highlights the mechanism of how shape intelligently affects nanomaterials' longitudinal or transverse relaxation, namely sphere, hollow, core-shell, cube, cluster, flower, dumbbell, rod, sheet, and bipyramid shapes. In addition, the combination of T1-T2 dual-mode MRI nanoprobes and advanced therapeutic strategies, as well as possible challenges from basic research to clinical transformation, are also systematically discussed. Therefore, this review will help others quickly understand the basic information on dual-mode MRI nanoprobes and gather thought-provoking ideas to advance the subfield of cancer nanomedicine.
Collapse
Affiliation(s)
- Menghan Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Gongzheng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Qian Lv
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Yufang Gong
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|