1
|
Dash P, Thirumurugan S, Chen YL, Dhawan U, Lin YC, Lin CP, Liu WC, Tseng CL, Chung RJ. Development of iron oxide based-upconversion nanocomposites for cancer therapeutics treatment. Int J Pharm 2025; 675:125545. [PMID: 40174808 DOI: 10.1016/j.ijpharm.2025.125545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Administration of therapeutic strategies alongside magnetic multifunctional nanocomposites has displayed improved cancer prognosis. However, the clinical use of this combination is limited owing to poor bioimaging performance, low biocompatibility, restricted tissue penetration in ultraviolet/visible regions, and low therapeutic efficacy of nanocomposites. To overcome these existing challenges, we designed iron oxide (Fe3O4)-based upconversion nanoparticles (UCNPs). Fe3O4 nanoparticles were synthesized via facile solvothermal method and incorporated into mesoporous silica (mS) layer (Fe3O4@mS). Fe3O4@mS nanoparticles were further decorated onto the surface of the UCNPs as a core material (UCNP-Fe3O4@mS, FMUP). Methotrexate (MTX) an efficient anticancer drug was loaded onto the mesoporous silica to produce FMUP-MTX nanocomposite. The FMUP nanocomposite displayed excellent photothermal therapy and showed 43% photothermal conversion efficiency. The designed nanocomposite has ability to decompose H2O2 to generates hydroxyl radical that promote chemodynamic therapy effect due to attribution of Fenton reaction. FMUP-MTX nanocomposite possessed improved chemotherapeutic performance under NIR laser irradiation. Further, T2-weighted magnetic resonance imaging performance of nanocomposite was observed. In vitro studies shown that cell viability was decreased to 25% under laser irradiation due to the therapeutic effect. In vivo studies exhibited that the FMUP-MTX nanocomposite inhibited the tumor growth with the laser irradiation. Therefore, these nanocomposites can be considered as a promising candidate for cancer therapeutics treatment.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yen-Lin Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wai-Ching Liu
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, 999077, Hong Kong
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei city 11031, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei city 11031, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei city 11031, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
2
|
Sun Z, Li X. A promising mesoporous silica carrier material for the diagnosis and treatment of liver diseases: recent research advances. J Mater Chem B 2025; 13:1935-1960. [PMID: 39801308 DOI: 10.1039/d4tb01822b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The therapeutic diagnosis of liver diseases has garnered significant interest within the medical community. In recent years, mesoporous silica nanoparticles (MSNs) have emerged as crucial nanocarriers for the treatment of liver ailments. Their remarkable diagnostic capabilities enable them to be used in techniques such as high-throughput mass spectrometry (MS), magnetic resonance imaging (MRI), near-infrared (NIR) fluorescence imaging, photoacoustic imaging (PAI), and ultrasonography (US), attracting considerable attention. Furthermore, the introduction of amino and carboxyl group modifications in MSNs has facilitated their use as drug delivery carriers for treating liver diseases, including hepatocellular carcinoma. This paper reviews the preparation methods, in vitro diagnostic capabilities, and in vivo therapeutic delivery systems of MSNs for liver disease treatment. It also summarizes relevant toxicity studies, aiming to provide a comprehensive overview of the diagnostic and therapeutic applications of MSNs in the treatment of liver diseases, particularly hepatocellular carcinoma. Through this review, we seek to offer theoretical insights into the potential of MSNs for diagnostic and therapeutic applications in liver disease treatment.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Pires ICB, Shuchi SI, Tostes BDVA, Santos DKDDN, Burnett WL, Leonce BC, Harvey OR, Coffer JL, de Sousa Filho IA, de Athayde-Filho PF, Junior SA, Mathis JM. Theranostics Using MCM-41-Based Mesoporous Silica Nanoparticles: Integrating Magnetic Resonance Imaging and Novel Chemotherapy for Breast Cancer Treatment. Int J Mol Sci 2024; 25:8097. [PMID: 39125669 PMCID: PMC11311303 DOI: 10.3390/ijms25158097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.
Collapse
Affiliation(s)
- Indira C. B. Pires
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Samia I. Shuchi
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Braulio de V. A. Tostes
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - Dayane K. D. do N. Santos
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - William L. Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Burke C. Leonce
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Omar R. Harvey
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76109, USA (B.C.L.); (O.R.H.); (J.L.C.)
| | - Idio Alves de Sousa Filho
- Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil;
| | | | - Severino A. Junior
- Department of Chemistry, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (I.C.B.P.); (B.d.V.A.T.); (D.K.D.d.N.S.)
| | - J. Michael Mathis
- School of Biomedical Sciences, Departments of Microbiology, Immunology, and Genetics and Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
4
|
Mesoporous Silica Nanoparticles for pH-Responsive Delivery of Iridium Metallotherapeutics and Treatment of Glioblastoma Multiforme. INORGANICS 2022. [DOI: 10.3390/inorganics10120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Using nanoparticles for controlled drug delivery to cancer, in response to its weakly acidic environment, represents a promising approach toward increasing the effectiveness and reducing the adverse effects of cancer therapy. Hence, the aim of this study is to construct novel mesoporous silica nanoparticle (MSN)-based acidification-responsive drug delivery systems for targeted cancer therapy. Herein, the surface of MSN is covalently functionalized with Ir(III)-based complex through a pH-cleavable hydrazone-based linker and characterized by nitrogen sorption, SEM, FTIR, EDS, TGA, DSC, DLS, and zeta potential measurements. Enhanced release of Ir(III)-complexes is evidenced by UV/VIS spectroscopy at the weakly acidic environments (pH 5 and pH 6) in comparison to the release at physiological conditions. The in vitro toxicity of the prepared materials is tested on healthy MRC-5 cells while their potential for the efficient treatment of glioblastoma multiforme is demonstrated on the U251 cell line.
Collapse
|