1
|
Xu Y, Zhao R, Wang M, Wang X, Wang Y, Li H, Ma Y, Wu B, Zhou Y. Identification of genetic characteristics in pediatric epilepsy with focal cortical dysplasia type 2 using deep whole-exome sequencing. Mol Genet Genomic Med 2022; 10:e2086. [PMID: 36342087 PMCID: PMC9747558 DOI: 10.1002/mgg3.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Focal cortical dysplasia type 2 (FCD2) is a malformation of cortical development that constitutes a common cause of pediatric focal epilepsy. Germline or somatic variants in the mammalian target of rapamycin (mTOR) signaling pathway genes are the pathogenesis of FCD2. OBJECTIVE In this study, whole-exome deep sequencing was performed on dysplastic cortex from focal epilepsy in children to explore genetic characteristics in FCD2. METHODS Resected core lesions of FCD2 were confirmed by pathology, and peripheral blood was collected from 11 patients. Deep whole-exome sequencing (>500X) was performed on derived genomic DNA, germline, or somatic variants in brain-specific genes were analyzed and identified. RESULTS In 11 patients, a heterozygous likely pathogenic germline variant of DEPDC5 was identified in one case, while somatic variants were found in four brain samples. The frequencies of the somatic variant allele were 2.52%-5.12%. Somatic variants in AKT3, TSC2, and MTOR (mTOR signaling pathway genes) were found in three samples. Besides, one somatic variant was detected in MED12 which has not been reported to associate with FCD2. CONCLUSION Our study expanded the variant spectrum in the mTOR-GATOR pathway, and also detected a somatic variant in MED12 which was potentially associated with FCD 2.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Rui Zhao
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Min Wang
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Xin‐hua Wang
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Yi Wang
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Hao Li
- Department of NeurosurgeryChildren's Hospital of Fudan UniversityShanghaiChina
| | - Yang‐yang Ma
- Department of PathologyChildren's Hospital of Fudan UniversityShanghaiChina
| | - Bing‐bing Wu
- Center for Molecular MedicinePediatrics Research Institute, Children's Hospital of Fudan UniversityShanghaiChina
| | - Yuan‐feng Zhou
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Krawczyk MC, Haney JR, Pan L, Caneda C, Khankan RR, Reyes SD, Chang JW, Morselli M, Vinters HV, Wang AC, Cobos I, Gandal MJ, Bergsneider M, Kim W, Liau LM, Yong W, Jalali A, Deneen B, Grant GA, Mathern GW, Fallah A, Zhang Y. Human Astrocytes Exhibit Tumor Microenvironment-, Age-, and Sex-Related Transcriptomic Signatures. J Neurosci 2022; 42:1587-1603. [PMID: 34987109 PMCID: PMC8883850 DOI: 10.1523/jneurosci.0407-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are critical for the development and function of synapses. There are notable species differences between human astrocytes and commonly used animal models. Yet, it is unclear whether astrocytic genes involved in synaptic function are stable or exhibit dynamic changes associated with disease states and age in humans, which is a barrier in understanding human astrocyte biology and its potential involvement in neurologic diseases. To better understand the properties of human astrocytes, we acutely purified astrocytes from the cerebral cortices of over 40 humans across various ages, sexes, and disease states. We performed RNA sequencing to generate transcriptomic profiles of these astrocytes and identified genes associated with these biological variables. We found that human astrocytes in tumor-surrounding regions downregulate genes involved in synaptic function and sensing of signals in the microenvironment, suggesting involvement of peritumor astrocytes in tumor-associated neural circuit dysfunction. In aging, we also found downregulation of synaptic regulators and upregulation of markers of cytokine signaling, while in maturation we identified changes in ionic transport with implications for calcium signaling. In addition, we identified subtle sexual dimorphism in human cortical astrocytes, which has implications for observed sex differences across many neurologic disorders. Overall, genes involved in synaptic function exhibit dynamic changes in the peritumor microenvironment and aging. These data provide powerful new insights into human astrocyte biology in several biologically relevant states that will aid in generating novel testable hypotheses about homeostatic and reactive astrocytes in humans.SIGNIFICANCE STATEMENT Astrocytes are an abundant class of cells playing integral roles at synapses. Astrocyte dysfunction is implicated in a variety of human neurologic diseases. Yet our knowledge of astrocytes is largely based on mouse studies. Direct knowledge of human astrocyte biology remains limited. Here, we present transcriptomic profiles of human cortical astrocytes, and we identified molecular differences associated with age, sex, and disease state. We found that peritumor and aging astrocytes downregulate genes involved in astrocyte-synapse interactions. These data provide necessary insight into human astrocyte biology that will improve our understanding of human disease.
Collapse
Affiliation(s)
- Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Jillian R Haney
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Samuel D Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Julia W Chang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, UCLA-DOE Institute for Genomics and Proteomics, Institute for Quantitative and Computational Biosciences - The Collaboratory at University of California, Los Angeles, California, 90024
| | - Harry V Vinters
- Department of Pathology and Lab Medicine (Neuropathology) and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Ronald Reagan UCLA Medical Center, Los Angeles, California, 90024
| | - Anthony C Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Inma Cobos
- Department of Pathology, Stanford University, Stanford, California, 94305
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, 90024
| | - Marvin Bergsneider
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Won Kim
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, 90024
| | - William Yong
- Department of Pathology, University of California, Irvine, California, 90095
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
- Center for Cell and Gene Therapy, Department of Neuroscience, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, 77030
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University, Stanford, California, 94305
| | - Gary W Mathern
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, 90024
- Brain Research Institute at UCLA, Los Angeles, California, 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California, 90095
- Molecular Biology Institute at UCLA, Los Angeles, California, 90095
| |
Collapse
|
3
|
D'Gama AM, Poduri A. Precision Therapy for Epilepsy Related to Brain Malformations. Neurotherapeutics 2021; 18:1548-1563. [PMID: 34608615 PMCID: PMC8608994 DOI: 10.1007/s13311-021-01122-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 02/04/2023] Open
Abstract
Malformations of cortical development (MCDs) represent a range of neurodevelopmental disorders that are collectively common causes of developmental delay and epilepsy, especially refractory childhood epilepsy. Initial treatment with antiseizure medications is empiric, and consideration of surgery is the standard of care for eligible patients with medically refractory epilepsy. In the past decade, advances in next generation sequencing technologies have accelerated progress in understanding the genetic etiologies of MCDs, and precision therapies for focal MCDs are emerging. Notably, mutations that lead to abnormal activation of the mammalian target of rapamycin (mTOR) pathway, which provides critical control of cell growth and proliferation, have emerged as a common cause of malformations. These include tuberous sclerosis complex (TSC), hemimegalencephaly (HME), and some types of focal cortical dysplasia (FCD). TSC currently represents the best example for the pathway from gene discovery to relatively safe and efficacious targeted therapy for epilepsy related to MCDs. Based on extensive pre-clinical and clinical data, the mTOR inhibitor everolimus is currently approved for the treatment of focal refractory seizures in patients with TSC. Although clinical studies are just emerging for FCD and HME, we believe the next decade will bring significant advancements in precision therapies for epilepsy related to these and other MCDs.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Focal cortical dysplasia: etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Childs Nerv Syst 2020; 36:2939-2947. [PMID: 32766946 DOI: 10.1007/s00381-020-04851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is the most prevalent cause of intractable epilepsy in children. It was first described by Taylor et al. in 1971. In 2011, the International League against Epilepsy described an international consensus of classification for FCD. However, the exact mechanism causing this pathology remains unclear. The diagnosis and recognition of FCD increase with the advances in neuroradiology and electrophysiology. FOCUS OF REVIEW In this paper, we discuss the literature regarding management of FCD with a focus on etiology, pathophysiology, classification, clinical presentation, and imaging modalities. We will also discuss certain variables affecting surgical outcome of patients with FCD. CONCLUSION Based on our review findings, it is concluded that surgical management with complete resection of the lesion following preoperative localization of the epileptogenic zone in patients with FCD subtypes can provide a seizure-free outcome.
Collapse
|
5
|
Novel tonometer device distinguishes brain stiffness in epilepsy surgery. Sci Rep 2020; 10:20978. [PMID: 33262385 PMCID: PMC7708453 DOI: 10.1038/s41598-020-77888-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Complete surgical resection of abnormal brain tissue is the most important predictor of seizure freedom following surgery for cortical dysplasia. While lesional tissue is often visually indiscernible from normal brain, anecdotally, it is subjectively stiffer. We report the first experience of the use of a digital tonometer to understand the biomechanical properties of epilepsy tissue and to guide the conduct of epilepsy surgery. Consecutive epilepsy surgery patients (n = 24) from UCLA Mattel Children’s Hospital were recruited to undergo intraoperative brain tonometry at the time of open craniotomy for epilepsy surgery. Brain stiffness measurements were corrected with abnormalities on neuroimaging and histopathology using mixed-effects multivariable linear regression. We collected 249 measurements across 30 operations involving 24 patients through the pediatric epilepsy surgery program at UCLA Mattel Children’s Hospital. On multivariable mixed-effects regression, brain stiffness was significantly associated with the presence of MRI lesion (β = 32.3, 95%CI 16.3–48.2; p < 0.001), severity of cortical disorganization (β = 19.8, 95%CI 9.4–30.2; p = 0.001), and recent subdural grid implantation (β = 42.8, 95%CI 11.8–73.8; p = 0.009). Brain tonometry offers the potential of real-time intraoperative feedback to identify abnormal brain tissue with millimeter spatial resolution. We present the first experience with this novel intraoperative tool for the conduct of epilepsy surgery. A carefully designed prospective study is required to elucidate whether the clinical application of brain tonometry during resective procedures could guide the area of resection and improve seizure outcomes.
Collapse
|
6
|
Yang H, Yang Z, Peng J, Huang Y, Yang Z, Yin F, Wu L. Early surgical intervention for structural infantile spasms in two patients under 6 months old: a case report. ACTA EPILEPTOLOGICA 2020. [DOI: 10.1186/s42494-020-00025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Infantile spasms (IS) are the most common childhood epileptic encephalopathy. Focal cortical dysplasia (FCD) and gray matter heterotopias (GH) are common structural causes of IS. The recommended first-line treatment for IS patients with structural causes is surgical intervention, according to the International League Against Epilepsy (ILAE) commission guidelines. However, there is currently no consensus on appropriate timings of surgery.
Case presentations
Two structural IS cases are presented here: one was caused by FCD, and the other by GH. Both patients exhibited recurrent seizures at the age of 2 months, had poor responses to various antiepileptic drugs (AEDs) and displayed severe mental and motor developmental retardation. Seizure types included focal seizures and spasms. Brain magnetic resonance imaging showed abnormal gray signal or suspicious FCD lesions that coincided with the origin of the focal seizures. The patients underwent lesion resection before the age of 6 months. Follow-up observation showed that seizures of both patients were completely controlled several days after the surgery. All AEDs were gradually reduced in dosage within 1 year, and the mental and motor development almost returned to normal.
Conclusion
Early resection of lesions in structural IS patients has benefits of effectively controlling convulsions and improving developmental retardation. Infants at several months of age can well tolerate craniotomy, and their cognitive development is more likely to return to normal after early surgery.
Collapse
|
7
|
Maiworm M, Nöth U, Hattingen E, Steinmetz H, Knake S, Rosenow F, Deichmann R, Wagner M, Gracien RM. Improved Visualization of Focal Cortical Dysplasia With Surface-Based Multiparametric Quantitative MRI. Front Neurosci 2020; 14:622. [PMID: 32612511 PMCID: PMC7308728 DOI: 10.3389/fnins.2020.00622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose In the clinical routine, detection of focal cortical dysplasia (FCD) by visual inspection is challenging. Still, information about the presence and location of FCD is highly relevant for prognostication and treatment decisions. Therefore, this study aimed to develop, describe and test a method for the calculation of synthetic anatomies using multiparametric quantitative MRI (qMRI) data and surface-based analysis, which allows for an improved visualization of FCD. Materials and Methods Quantitative T1-, T2- and PD-maps and conventional clinical datasets of patients with FCD and epilepsy were acquired. Tissue segmentation and delineation of the border between white matter and cortex was performed. In order to detect blurring at this border, a surface-based calculation of the standard deviation of each quantitative parameter (T1, T2, and PD) was performed across the cortex and the neighboring white matter for each cortical vertex. The resulting standard deviations combined with measures of the cortical thickness were used to enhance the signal of conventional FLAIR-datasets. The resulting synthetically enhanced FLAIR-anatomies were compared with conventional MRI-data utilizing regions of interest based analysis techniques. Results The synthetically enhanced FLAIR-anatomies showed higher signal levels than conventional FLAIR-data at the FCD sites (p = 0.005). In addition, the enhanced FLAIR-anatomies exhibited higher signal levels at the FCD sites than in the corresponding contralateral regions (p = 0.005). However, false positive findings occurred, so careful comparison with conventional datasets is mandatory. Conclusion Synthetically enhanced FLAIR-anatomies resulting from surface-based multiparametric qMRI-analyses have the potential to improve the visualization of FCD and, accordingly, the treatment of the respective patients.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt, Germany.,Department of Neuroradiology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - Susanne Knake
- Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany.,Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt, Germany.,Brain Imaging Center, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research Consortium (CePTER), Frankfurt, Germany
| |
Collapse
|
8
|
Ahmad R, Maiworm M, Nöth U, Seiler A, Hattingen E, Steinmetz H, Rosenow F, Deichmann R, Wagner M, Gracien RM. Cortical Changes in Epilepsy Patients With Focal Cortical Dysplasia: New Insights With T 2 Mapping. J Magn Reson Imaging 2020; 52:1783-1789. [PMID: 32383241 DOI: 10.1002/jmri.27184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. PURPOSE To investigate cortical properties outside FCD regions with T2 -relaxometry. STUDY TYPE Prospective study. SUBJECTS Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3T, fast spin-echo T2 -mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1 -weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1 -maps. ASSESSMENT Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. STATISTICAL TESTS General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. RESULTS Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. DATA CONCLUSION Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. EVIDENCE LEVEL 21 TECHNICAL EFFICACY STAGE: 3 J. MAGN. RESON. IMAGING 2020;52:1783-1789.
Collapse
Affiliation(s)
- Rida Ahmad
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| |
Collapse
|
9
|
|
10
|
Chen J, Huang Z, Li L, Ren L, Wang Y. Histological type of focal cortical dysplasia is associated with the risk of postsurgical seizure in children and adolescents. Ther Clin Risk Manag 2019; 15:877-884. [PMID: 31371975 PMCID: PMC6628944 DOI: 10.2147/tcrm.s203039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/14/2019] [Indexed: 01/23/2023] Open
Abstract
Aim Focal cortical dysplasia (FCD) is a common cause of refractory epilepsy in children and adolescents. Epilepsy surgery is a treatment option for FCD. This study aimed to investigate the relationship between postsurgical outcomes and FCD types according to the International League Against Epilepsy (ILAE) classification and assess prognostic factors in pediatric and adolescent epilepsy surgery. Methods We retrospectively analyzed 92 children and adolescents with a proven pathological diagnosis of FCD who underwent resective surgery at our epilepsy center between August 2012 and September 2015. The patients were followed up for at least 1 year to evaluate the surgical outcomes, and a multivariable regression analysis was performed to identify risk factors of seizure relapse. Results After surgery, 53.3% of the patients were completely seizure-free during the entire follow-up period. The FCD types, incomplete resection of the epileptic cortex, and use of intracranial electrode were independent risk factors of seizure recurrence. The patients with FCD type II had relatively favorable surgical outcomes compared to the patients with FCD type I. The difference in the postoperative outcome between patients with FCD types III and I was not significant. Conclusion There is a significant association between FCD types and surgical outcomes in children and adolescents with epilepsy. These findings provide guidance for the optimization of surgical strategies.
Collapse
Affiliation(s)
- Jia Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China.,Beijing Key Laboratory of Neuromodulation , Beijing 100053, People's Republic of China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China.,Beijing Key Laboratory of Neuromodulation , Beijing 100053, People's Republic of China
| | - Liping Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China.,Beijing Key Laboratory of Neuromodulation , Beijing 100053, People's Republic of China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China.,Beijing Key Laboratory of Neuromodulation , Beijing 100053, People's Republic of China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China.,Beijing Key Laboratory of Neuromodulation , Beijing 100053, People's Republic of China
| |
Collapse
|
11
|
Al Amrani F, Dudley R, Bello-Espinosa LE, Rosenblatt B, Srour M, Sébire G. Intravenous Immunoglobulin as a Treatment for Intractable Epilepsy Secondary to Focal Cortical Dysplasia: A Meta-analysis. Pediatr Neurol 2017; 76:79-81. [PMID: 28969879 DOI: 10.1016/j.pediatrneurol.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The observation of a dramatic response to intravenous immunoglobulin (IVIG) by a child from our center with intractable epilepsy due to focal cortical dysplasia prompted us to perform a meta-analysis on the efficiency of IVIG in this condition. Focal cortical dysplasia is a common cause of intractable epilepsy. Microglial activation and upregulation of neuroinflammatory pathways have been documented in brain specimen from surgically treated patients with intractable epilepsy and focal cortical dysplasia. IVIG has been used for decades to treat patients with intractable epilepsy; however, there is little evidence regarding its efficacy, possibly because of the pathophysiological heterogeneity of patients included in most of the published studies. METHODS A search for studies in patients from 0 to 18 years was performed in databases. We found four observational studies-prospective or retrospective-including patients with focal cortical dysplasia with intractable epilepsy treated with IVIG. The primary outcome was a reduction of seizure frequency by more than 50%. RESULTS A total of eight patients were included in this meta-analysis. The intravenous immunoglobulin doses ranged from 0.2 to 1 g/kg/day, repeated three to six times over one to 14 months (median: five months). Intravenous immunoglobulin was associated with reduced seizure frequency in six out of eight patients (P < 0.05). Among these six patients, the reduction of seizure frequency lasted for nine months to nine years (median: 3.7 years). There were either no or mild adverse effects of IVIG infusion including postinfusion paresthesia (n = 1) and a transient increase in temperature (n = 1). CONCLUSIONS Despite obvious limitations, mainly because of the small number of patients, and the selection biases, this study suggests that, based on the available data, IVIG might be effective in the treatment of intractable epilepsy secondary to focal cortical dysplasia. Further therapeutic trials are mandatory to further clarify the efficacy of IVIG in this condition.
Collapse
Affiliation(s)
- Fatema Al Amrani
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Roy Dudley
- Department of Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada; Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Luis E Bello-Espinosa
- Department of Pediatrics, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Bernard Rosenblatt
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada; Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Guillaume Sébire
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Canada; Research Institute, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Trevathan E. Editorial brain malformation surveillance in the Zika era. ACTA ACUST UNITED AC 2017; 106:869-874. [PMID: 27891785 PMCID: PMC5132043 DOI: 10.1002/bdra.23582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
The current surveillance systems for congenital microcephaly are necessary to monitor the impact of Zika virus (ZIKV) on the developing human brain, as well as the ZIKV prevention efforts. However, these congenital microcephaly surveillance systems are insufficient. Abnormalities of neuronal differentiation, development and migration may occur among infants with normal head circumference who have intrauterine exposure to ZIKV. Therefore, surveillance for congenital microcephaly does not ascertain many of the infants seriously impacted by congenital ZIKV infection. Furthermore, many infants with normal head circumference and with malformations of the brain cortex do not have clinical manifestations of their congenital malformations until several months to many years after birth, when they present with clinical manifestations such as seizures/epilepsy, developmental delays with or without developmental regression, and/or motor impairment. In response to the ZIKV threat, public health surveillance systems must be enhanced to ascertain a wide variety of congenital brain malformations, as well as their clinical manifestations that lead to diagnostic brain imaging. Birth Defects Research (Part A) 106:869–874, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Edwin Trevathan
- The Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt Institute for Global Health, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,The Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Surgical outcomes in two different age groups with Focal Cortical Dysplasia type II: Any real difference? Epilepsy Behav 2017; 70:45-49. [PMID: 28410464 DOI: 10.1016/j.yebeh.2017.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Focal Cortical Dysplasias (FCDs) represent a common architectural cortical disorder underlying drug-resistant focal epilepsy. So far, studies aimed at evaluating whether age at surgery is a factor influencing surgical outcome are lacking, so that data on the comparison between patients harboring Type II FCD operated at younger age and those operated at adult age are still scarce. We compared presurgical clinical features and surgical outcomes of patients with histopathologically diagnosed Type II FCD undergoing surgery at an earlier age with those operated after 20 years of age. METHODS We retrospectively analyzed 1660 consecutive patients operated at the "Claudio Munari" Epilepsy Surgery Centre. There were 289 patients (17.4%) with a neuropathological diagnosis of Type II FCD. We included two different groups of patients, the first one including patients operated on at less than 6years, the second sharing the same seizure onset age but with delayed surgery, carried out after the age of 20. Seizure characteristics and, neuropsychological and postoperative seizure outcomes were evaluated by study group. RESULTS Forty patients underwent surgery before the age of 6 and 66 patients after the age of 20. Surgical outcome was favorable in the whole population (72.6% were classified in Engel's Class Ia+Ic), independently from age at surgery. In the children group, 32 patients were classified in Class I, including 30 (75%) children in classes Ia and Ic. In the adult group, 53 belonged to Class I of whom 47 (71%) were in classes Ia and Ic. The percentage of permanent complications, the surgical outcomes, and AED withdrawal did not significantly differ by study group. CONCLUSION Our results indicate that there is no difference between the groups, suggesting that outcome depends mainly on the histological findings and not on timing of surgery.
Collapse
|
14
|
Knerlich-Lukoschus F, Connolly MB, Hendson G, Steinbok P, Dunham C. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series. J Neurosurg Pediatr 2017; 19:182-195. [PMID: 27885945 DOI: 10.3171/2016.8.peds1686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) Type II is divided into 2 subgroups based on the absence (IIA) or presence (IIB) of balloon cells. In particular, extratemporal FCD Type IIA and IIB is not completely understood in terms of clinical, imaging, biological, and neuropathological differences. The aim of the authors was to analyze distinctions between these 2 formal entities and address clinical, MRI, and immunohistochemical features of extratemporal epilepsies in children. METHODS Cases formerly classified as Palmini FCD Type II nontemporal epilepsies were identified through the prospectively maintained epilepsy database at the British Columbia Children's Hospital in Vancouver, Canada. Clinical data, including age of seizure onset, age at surgery, seizure type(s) and frequency, affected brain region(s), intraoperative electrocorticographic findings, and outcome defined by Engel's classification were obtained for each patient. Preoperative and postoperative MRI results were reevaluated. H & E-stained tissue sections were reevaluated by using the 2011 International League Against Epilepsy classification system and additional immunostaining for standard cellular markers (neuronal nuclei, neurofilament, glial fibrillary acidic protein, CD68). Two additional established markers of pathology in epilepsy resection, namely, CD34 and α-B crystallin, were applied. RESULTS Seven nontemporal FCD Type IIA and 7 Type B cases were included. Patients with FCD Type IIA presented with an earlier age of epilepsy onset and slightly better Engel outcome. Radiology distinguished FCD Types IIA and IIB, in that Type IIB presented more frequently with characteristic cortical alterations. Nonphosphorylated neurofilament protein staining confirmed dysplastic cells in dyslaminated areas. The white-gray matter junction was focally blurred in patients with FCD Type IIB. α-B crystallin highlighted glial cells in the white matter and subpial layer with either of the 2 FCD Type II subtypes and balloon cells in patients with FCD Type IIB. α-B crystallin positivity proved to be a valuable tool for confirming the histological diagnosis of FCD Type IIB in specimens with rare balloon cells or difficult section orientation. Distinct nonendothelial cellular CD34 staining was found exclusively in tissue from patients with MRI-positive FCD Type IIB. CONCLUSIONS Extratemporal FCD Types IIA and IIB in the pediatric age group exhibited imaging and immunohistochemical characteristics; cellular immunoreactivity to CD34 emerged as an especially potential surrogate marker for lesional FCD Type IIB, providing additional evidence that FCD Types IIA and IIB might differ in their etiology and biology. Although the sample number in this study was small, the results further support the theory that postoperative outcome-defined by Engel's classification-is multifactorial and determined by not only histology but also the extent of the initial lesion, its location in eloquent areas, intraoperative electrocorticographic findings, and achieved resection grade.
Collapse
Affiliation(s)
- Friederike Knerlich-Lukoschus
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Campus Kiel, Germany; and.,Divisions of 2 Pediatric Neurosurgery and.,Department of Neurosurgery, British Columbia Children's Hospital, University of British Columbia, Vancouver, Canada
| | | | - Glenda Hendson
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, and
| | - Paul Steinbok
- Divisions of 2 Pediatric Neurosurgery and.,Department of Neurosurgery, British Columbia Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Christopher Dunham
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
15
|
Xue H, Cai L, Dong S, Li Y. Clinical characteristics and post-surgical outcomes of focal cortical dysplasia subtypes. J Clin Neurosci 2016; 23:68-72. [DOI: 10.1016/j.jocn.2015.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/10/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
16
|
Cooper CJ, McConnell F, Walmsley G, Gonçalves R. Focal cortical dysplasia resulting in seizures in an adult dog. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2015-000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - Gemma Walmsley
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| | - Rita Gonçalves
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| |
Collapse
|
17
|
Serino D, Freri E, Ragona F, D’Incerti L, Bernardi B, Di Ciommo V, Granata T, Vigevano F, Fusco L. Focal seizures versus epileptic spasms in children with focal cortical dysplasia and epilepsy onset in the first year. Epilepsy Res 2015; 109:203-9. [DOI: 10.1016/j.eplepsyres.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
|
18
|
Abstract
BACKGROUND AND PURPOSE Epilepsy surgery for medically refractory epilepsy secondary to cortical dysplasia in children poses special challenges. We aim to review the current available literature on the outcome after epilepsy surgery for cortical dysplasia in children and critically evaluate the prognostic predictors of outcome. METHODS A comprehensive review of the literature was performed focusing on the outcome after epilepsy surgery for cortical dysplasia in children. Two large recent meta-analyses that included children and adults and several pediatric series of cortical dysplasia in children were reviewed. RESULTS AND CONCLUSIONS The overall seizure freedom rates range from 40 to 73 %, at about 2 years after surgery; most studies report 50-55% success rate. Complete resection of the epileptogenic lesion/zone remains the most important variable predictive of postoperative seizure freedom. Features unique to cortical dysplasia that limits our ability to ensure complete resection of the epileptogenic zone are reviewed.
Collapse
Affiliation(s)
- Ahsan N V Moosa
- Section of Pediatric Epilepsy, Epilepsy Center, Department of Neurology, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S-51, Cleveland, OH, 44195, USA,
| | | |
Collapse
|
19
|
Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna) 2014; 122:849-62. [DOI: 10.1007/s00702-014-1312-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
20
|
Marin-Valencia I, Guerrini R, Gleeson JG. Pathogenetic mechanisms of focal cortical dysplasia. Epilepsia 2014; 55:970-8. [PMID: 24861491 PMCID: PMC4107035 DOI: 10.1111/epi.12650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 02/01/2023]
Abstract
Focal cortical dysplasias (FCDs) constitute a prevalent cause of intractable epilepsy in children, and is one of the leading conditions requiring epilepsy surgery. Despite recent advances in the cellular and molecular biology of these conditions, the pathogenetic mechanisms of FCDs remain largely unknown. The purpose if this work is to review the molecular underpinnings of FCDs and to highlight potential therapeutic targets. A systematic review of the literature regarding the histologic, molecular, and electrophysiologic aspects of FCDs was conducted. Disruption of the mammalian target of rapamycin (mTOR) signaling comprises a common pathway underlying the structural and electrical disturbances of some FCDs. Other mechanisms such as viral infections, prematurity, head trauma, and brain tumors are also posited. mTOR inhibitors (i.e., rapamycin) have shown positive results on seizure management in animal models and in a small cohort of patients with FCD. Encouraging progress has been achieved on the molecular and electrophysiologic basis of constitutive cells in the dysplastic tissue. Despite the promising results of mTOR inhibitors, large-scale randomized trials are in need to evaluate their efficacy and side effects, along with additional mechanistic studies for the development of novel, molecular-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Neurology and Neurotherapeutics, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | | |
Collapse
|