1
|
Benucci S, Ruiz A, Franchini M, Ruggiero L, Zoppi D, Sitsapesan R, Lindsay C, Pelczar P, Pietrangelo L, Protasi F, Treves S, Zorzato F. A novel, patient-derived RyR1 mutation impairs muscle function and calcium homeostasis in mice. J Gen Physiol 2024; 156:e202313486. [PMID: 38445312 PMCID: PMC10911087 DOI: 10.1085/jgp.202313486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
RYR1 is the most commonly mutated gene associated with congenital myopathies, a group of early-onset neuromuscular conditions of variable severity. The functional effects of a number of dominant RYR1 mutations have been established; however, for recessive mutations, these effects may depend on multiple factors, such as the formation of a hypomorphic allele, or on whether they are homozygous or compound heterozygous. Here, we functionally characterize a new transgenic mouse model knocked-in for mutations identified in a severely affected child born preterm and presenting limited limb movement. The child carried the homozygous c.14928C>G RYR1 mutation, resulting in the p.F4976L substitution. In vivo and ex vivo assays revealed that homozygous mice fatigued sooner and their muscles generated significantly less force compared with their WT or heterozygous littermates. Electron microscopy, biochemical, and physiological analyses showed that muscles from RyR1 p.F4976L homozygous mice have the following properties: (1) contain fewer calcium release units and show areas of myofibrillar degeneration, (2) contain less RyR1 protein, (3) fibers show smaller electrically evoked calcium transients, and (4) their SR has smaller calcium stores. In addition, single-channel recordings indicate that RyR1 p.F4976L exhibits higher Po in the presence of 100 μM [Ca2+]. Our mouse model partly recapitulates the clinical picture of the homozygous human patient and provides significant insight into the functional impact of this mutation. These results will help understand the pathology of patients with similar RYR1 mutations.
Collapse
Affiliation(s)
- Sofia Benucci
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Alexis Ruiz
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Martina Franchini
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Dario Zoppi
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | - Chris Lindsay
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Laura Pietrangelo
- DMSI, Department of Medicine and Aging Sciences and CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- DMSI, Department of Medicine and Aging Sciences and CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Susan Treves
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Zorzato
- Departments of Biomedicine and Neurology, Basel University Hospital, Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis 2018; 47:57-66. [PMID: 30515543 DOI: 10.1007/s00240-018-1101-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023]
Abstract
Cystinuria, a genetic disorder of cystine transport, is characterized by excessive excretion of cystine in the urine and recurrent cystine stones in the kidneys and, to a lesser extent, in the bladder. Males generally are more severely affected than females. The disorder may lead to chronic kidney disease in many patients. The cystine transporter (b0,+) is a heterodimer consisting of the rBAT (encoded by SLC3A1) and b0,+AT (encoded by SLC7A9) subunits joined by a disulfide bridge. The molecular basis of cystinuria is known in great detail, and this information is now being used to define genotype-phenotype correlations. Current treatments for cystinuria include increased fluid intake to increase cystine solubility and the administration of thiol drugs for more severe cases. These drugs, however, have poor patient compliance due to adverse effects. Thus, there is a need to reduce or eliminate the risks associated with therapy for cystinuria. Four mouse models for cystinuria have been described and these models provide a resource for evaluating the safety and efficacy of new therapies for cystinuria. We are evaluating a new approach for the treatment of cystine stones based on the inhibition of cystine crystal growth by cystine analogs. Our ongoing studies indicate that cystine diamides are effective in preventing cystine stone formation in the Slc3a1 knockout mouse model for cystinuria. In addition to crystal growth, crystal aggregation is required for stone formation. Male and female mice with cystinuria have comparable levels of crystalluria, but very few female mice form stones. The identification of factors that inhibit cystine crystal aggregation in female mice may provide insight into the gender difference in disease severity in patients with cystinuria.
Collapse
|
3
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
4
|
Astrea G, Petrucci A, Cassandrini D, Savarese M, Trovato R, Lispi L, Rubegni A, Giacanelli M, Massa R, Nigro V, Santorelli FM. Myoimaging in the NGS era: the discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features--a case report. BMC MEDICAL GENETICS 2016; 17:25. [PMID: 27005958 PMCID: PMC4804697 DOI: 10.1186/s12881-016-0288-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Background Myosin heavy chain 7 related myopathies are rare disorders characterized by a wide phenotypic spectrum and heterogeneous pathological features. In the present study, we performed clinical, morphological, genetic and imaging investigations in three relatives affected by autosomal dominant distal myopathy. Whilst earlier traditional Sanger investigations had pointed to the wrong gene as disease causative, next-generation sequencing allowed us to obtain the definitive molecular genetic diagnosis in the family. Case presentation The proposita, being found to harbor a novel heterozygous mutation in the RYR1 gene (p.Glu294Lys), was initially diagnosed with core myopathy. Subsequently, consideration of muscle magnetic resonance imaging (MRI) features and extension of family study led this diagnosis to be questioned. Use of next-generation sequencing analysis identified a novel mutation in the MYH7gene (p.Ser1435Pro) that segregated in the affected family members. Conclusions This study identified a novel mutation in MYH7 in a family where the conclusive molecular diagnosis was reached through a complicated path. This case report might raise awareness, among clinicians, of the need to interpret NGS data in combination with muscle MRI patterns so as to facilitate the pinpointing of the main molecular etiology in inherited muscle disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0288-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guja Astrea
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Denise Cassandrini
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - Marco Savarese
- Department of Biochemistry, Biophysics and General Pathology (Medical Genetics), Second University of Naples, Naples, Italy
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - Ludovico Lispi
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - Manlio Giacanelli
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine (Neurology), University of Tor Vergata, Rome, Italy
| | - Vincenzo Nigro
- Department of Biochemistry, Biophysics and General Pathology (Medical Genetics), Second University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Filippo M Santorelli
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128, Calambrone, Pisa, Italy.
| |
Collapse
|