1
|
Gemperli K, Folorunso F, Norin B, Joshua R, Rykowski R, Hill C, Galindo R, Aravamuthan BR. Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice. Pediatr Res 2024:10.1038/s41390-024-03603-8. [PMID: 39433959 DOI: 10.1038/s41390-024-03603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Preterm birth is a common cause of dystonia. Though dystonia is often associated with striatal dysfunction after neonatal brain injury, cortical dysfunction may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition is associated with genetic and idiopathic dystonias. To investigate cortical dysfunction and dystonia following preterm birth, we developed a new model of preterm birth in mice. METHODS We induced preterm birth in C57BL/6J mice at embryonic day 18.3, ~24 h early. Leg adduction variability and amplitude, metrics we have shown distinguish between dystonia from spasticity during gait in people with CP, were quantified from gait videos of mice. Parvalbumin-positive interneurons, the largest population of cortical inhibitory interneurons, were quantified in the sensorimotor cortex and striatum. RESULTS Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm also demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, but not the striatum, suggesting dysfunction of cortical inhibition. CONCLUSIONS These data may suggest an association between cortical dysfunction and dystonic gait features following preterm birth. We propose that our novel mouse model of preterm birth can be used to study this association. IMPACT Mouse models of true preterm birth are valuable for studying clinical complications of prematurity. Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical inhibition. Mice born preterm do not demonstrate changes in parvalbumin immunoreactivity in the striatum. Cortical dysfunction may be associated with dystonic gait features following preterm birth.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Galindo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhooma R Aravamuthan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Edoigiawerie S, Henry J, Issa N, David H. A Systematic Review of EEG and MRI Features for Predicting Long-Term Neurological Outcomes in Cooled Neonates With Hypoxic-Ischemic Encephalopathy (HIE). Cureus 2024; 16:e71431. [PMID: 39539899 PMCID: PMC11558949 DOI: 10.7759/cureus.71431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) represents a significant global disease burden, but more importantly, it leaves a lasting impact of disability on individual children and their families. HIE outcome prognostication is important for guiding clinical interventions and counseling families. The objective of this study was to systematically review early electroencephalogram (EEG) and magnetic resonance imaging (MRI) features associated with long-term neurological outcomes in infants after perinatal HIE. Articles were extracted from PubMed, CINAHL, and Scopus. Twenty studies were included that assessed EEG and/or MRI patterns in neonates who underwent therapeutic hypothermia and were followed to determine long-term outcomes. Articles that did not meet the inclusion criteria were excluded. Covidence review manager (Melbourne, Australia: Covidence) was used to extract, evaluate, and synthesize review results. Of the articles included, eight focused on EEG features, eight on MRI features, and four on assessments using both EEG and MRI. Abnormal EEG background and burst suppression severity were associated with poor outcomes. Higher MRI injury scores in the basal ganglia and thalamus were also correlated with poor outcomes. Finally, studies also revealed restricted diffusion and greater lesion size in the subcortical gray matter correlated with poor outcomes. We also identified limitations in the included studies which primarily involved sample size, potential for MRI pseudonormalization, and the potential tradeoff between retention of infants able to receive long-term follow-up and attrition of those lost to follow-up. We conclude that EEG background patterns, MRI scoring, subcortical lesion burden, and MRI diffusivity are sensitive metrics for predicting outcomes. Both early EEG and MRI features may serve as high-fidelity biomarkers for secondary energy failure and for counseling families of neonates at high risk for devastating neurologic outcomes. Additionally, there is a paucity of information on the impact of HIE on brain areas outside of the standard clinical basal-ganglia and watershed patterns, especially in locations like the corpus callosum. Finally, MRI pseudonormalization may underestimate the extent of injury in these studies.
Collapse
Affiliation(s)
| | - Julia Henry
- Pediatric Neurology, AdventHealth Medical Group, Orlando, USA
| | - Naoum Issa
- Neurological Surgery, University of Chicago Medical Center, Chicago, USA
| | - Henry David
- Pediatric Neurology, University of Chicago Medical Center, Chicago, USA
| |
Collapse
|
3
|
Lewis SA, Aravamuthan B, Fehlings D, Kruer MC. Evolving understanding of CP phenotypes: the importance of dystonia. Pediatr Res 2024:10.1038/s41390-024-03327-9. [PMID: 38926549 DOI: 10.1038/s41390-024-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/15/2024] [Indexed: 06/28/2024]
Abstract
Cerebral palsy (CP) is the core neurodevelopmental disorder affecting movement. Several distinct movement disorders can occur in people with cerebral palsy. Dystonia is a movement disorder that causes non-velocity-dependent hypertonia and/or abnormal, often repetitive, twisting movements, and/or postures. Dystonia occurs more frequently in patients with CP than has been recognized previously, and is treated differently than other aspects of CP. Dystonia is an important cause of chronic pain, hospitalization, and musculoskeletal complications. We describe recent advances in dystonia diagnosis in patients with cerebral palsy and highlight focus areas for ongoing research and clinical care. IMPACT: Dystonia is a movement disorder that is more common in people with cerebral palsy (CP) than previously thought. Dystonia contributes to hospitalization, chronic pain, and complications in CP patients. People with dystonic CP require different tools to diagnose and treat their condition. We summarize current state of the art in dystonia in CP and identify areas of focus for future work.
Collapse
Affiliation(s)
- Sara A Lewis
- Departments of Cellular & Molecular Medicine, Child Health, and Neurology and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's, Phoenix, AZ, USA
| | - Bhooma Aravamuthan
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, Washington University in St Louis and St Louis Children's Hospital, St Louis, MO, USA
| | - Darcy Fehlings
- Holland Bloorview Kids Rehabilitation Hospital, Deparment of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Michael C Kruer
- Departments of Cellular & Molecular Medicine, Child Health, and Neurology and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Gemperli K, Folorunso F, Norin B, Joshua R, Hill C, Rykowski R, Galindo R, Aravamuthan BR. Mice born preterm develop gait dystonia and reduced cortical parvalbumin immunoreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578353. [PMID: 38352408 PMCID: PMC10862908 DOI: 10.1101/2024.02.01.578353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Preterm birth leading to cerebral palsy (CP) is the most common cause of childhood dystonia, a movement disorder that is debilitating and often treatment refractory. Dystonia has been typically associated with dysfunction of striatal cholinergic interneurons, but clinical imaging data suggests that cortical injury may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition has been found in many studies of non-CP dystonias. To assess the potential for a cortical etiology of dystonia following preterm birth, we developed a new model of preterm birth in mice. Noting that term delivery in mice on a C57BL/6J background is embryonic day 19.1 (E19.1), we induced preterm birth at the limits of pup viability at embryonic day (E) 18.3, equivalent to human 22 weeks gestation. Mice born preterm demonstrate display clinically validated metrics of dystonia during gait (leg adduction amplitude and variability) and also demonstrate reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical parvalbumin-positive inhibitory interneurons. Notably, reduced parvalbumin immunoreactivity or changes in parvalbumin-positive neuronal number were not observed in the striatum. These data support the association between cortical dysfunction and dystonia following preterm birth. We propose that our mouse model of preterm birth can be used to study this association and potentially also study other sequelae of extreme prematurity.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | | | | |
Collapse
|
5
|
Gill JS, Nguyen MX, Hull M, van der Heijden ME, Nguyen K, Thomas SP, Sillitoe RV. Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias. DYSTONIA 2023; 2:11805. [PMID: 38273865 PMCID: PMC10810232 DOI: 10.3389/dyst.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
Collapse
Affiliation(s)
- Jason S. Gill
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Megan X. Nguyen
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Mariam Hull
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Ken Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Sruthi P. Thomas
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|