1
|
Weng S, Liu L, Ren Q, Wang Q, Shan W. Establishment of a human induced pluripotent stem cell (iPSC) line from a patient harboring a TSC1 gene mutation. Stem Cell Res 2025; 87:103749. [PMID: 40516146 DOI: 10.1016/j.scr.2025.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 05/17/2025] [Accepted: 06/01/2025] [Indexed: 06/16/2025] Open
Abstract
The tuberous sclerosis complex 1 (TSC1) gene encodes for the growth inhibitory protein, hamartin, and has been clinically implicated in tuberous sclerosis complex (TSC) and associated epilepsy. In this study, we present an induced pluripotent stem cell (iPSC) line derived from a patient with epilepsy and tuberous sclerosis, carrying the TSC1 c.2626-2(IVS20) A > G variant. Peripheral blood mononuclear cells from the patient were successfully reprogrammed into iPSCs, which maintained a normal karyotype, expressed markers of hPSCs, and demonstrated the ability to differentiate into all three germ layers in vivo. This iPSC line serves as a valuable resource for investigating the pathogenic mechanisms underlying epilepsy.
Collapse
Affiliation(s)
- Shiwen Weng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; National Center for Clinical Medicine of Neurological Diseases, Beijing 10070, PR China
| | - Lu Liu
- Breast Surgery Department, Qingdao Municipal Hospital, Qingdao 266000, PR China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, PR China; International Cooperation Laboratory of Stem Cell Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Anatomy and Embryology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; National Center for Clinical Medicine of Neurological Diseases, Beijing 10070, PR China.
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China; National Center for Clinical Medicine of Neurological Diseases, Beijing 10070, PR China.
| |
Collapse
|
2
|
Na JH, Lee H, Lee YM. Clinical Efficacy and Safety of the Ketogenic Diet in Patients with Genetic Confirmation of Drug-Resistant Epilepsy. Nutrients 2025; 17:979. [PMID: 40290041 PMCID: PMC11945077 DOI: 10.3390/nu17060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Drug-resistant epilepsy (DRE) affects 20-30% of patients with epilepsy who fail to achieve seizure control with antiseizure medications, posing a significant therapeutic challenge. In this narrative review, we examine the clinical efficacy and safety of the classic ketogenic diet (cKD) and its variants, including the modified Atkins diet (MAD), medium-chain triglyceride diet (MCTD), and low glycemic index treatment (LGIT), in patients with genetically confirmed drug-resistant epilepsy. These diets induce a metabolic shift from glucose to ketones, enhance mitochondrial function, modulate neurotransmitter balance, and exert anti-inflammatory effects. However, genetic factors strongly influence the efficacy and safety of the cKD, with absolute indications including glucose transporter type 1 deficiency syndrome (GLUT1DS) and pyruvate dehydrogenase complex deficiency (PDCD). Preferred adjunctive applications of the KD include genetic epilepsies, such as SCN1A-related Dravet syndrome, TSC1/TSC2-related tuberous sclerosis complex, and UBE3A-related Angelman syndrome. However, because of the risk of metabolic decompensation, the cKD is contraindicated in patients with pathogenic variants of pyruvate carboxylase and SLC22A5. Recent advancements in precision medicine suggest that genetic and microbiome profiling may refine patient selection and optimize KD-based dietary interventions. Genome-wide association studies and multiomics approaches have identified key metabolic pathways influencing the response to the cKD, and these pave the way for individualized treatment strategies. Future research should integrate genomic, metabolomic, and microbiome data to develop biomarker-driven dietary protocols with improved efficacy and safety. As dietary therapies continue to evolve, a personalized medical approach is essential to maximize their clinical utility for genetic epilepsy and refractory epilepsy syndromes.
Collapse
Affiliation(s)
| | | | - Young-Mock Lee
- Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (J.-H.N.); (H.L.)
| |
Collapse
|
3
|
Kuhlmann L, Stritzelberger J, Fietkau R, Distel LV, Hamer HM. Radiosensitivity in individuals with tuberous sclerosis complex. Discov Oncol 2024; 15:525. [PMID: 39367202 PMCID: PMC11452609 DOI: 10.1007/s12672-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Benign tumors, but rarely cancer, are common in patients with tuberous sclerosis complex (TSC). Blood samples from patients undergoing treatment for TSC at our institution were analyzed for their individual sensitivity to ionizing radiation. Blood samples were collected from 13 adult patients with TSC. The samples were irradiated ex vivo and analyzed by 3-color fluorescence in situ hybridization. In each patient, aberrations were analyzed in 200 metaphases of chromosomes 1, 2, and 4 and scored as breaks. Radiosensitivity was determined by mean breaks per metaphase (B/M) and compared to both healthy donors and oncologic patients. The radiosensitivity (B/M) of the TSC patient cohort (n = 13; female: 46.2%, B/M: 0.48 ± 0.11) was clearly increased compared to healthy individuals of similar age (n = 90; female: 54.4%; B/M: 0.40 ± 0.09; p = 0.001). There was no difference compared to age-matched oncological patients (n = 78; female: 67.9%; B/M 0.49 ± 0.14; p = 0.246). Similarly, the proportion of radiosensitive (B/M > 0.5) and distinctly radiosensitive individuals (B/M > 0.6) was increased in the TSC and oncological patient cohorts (TSC: 30.8% and 7.7%, oncological patients: 46.2% and 14.1%) compared to the healthy individuals (11.1% and 2.2%). Although patients with TSC develop mostly benign and rarely malignant tumors, they are similarly sensitive to radiation as patients with malignant tumors.
Collapse
Affiliation(s)
- Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Jenny Stritzelberger
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany.
| | - Hajo M Hamer
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes (Basel) 2024; 15:332. [PMID: 38540392 PMCID: PMC10970281 DOI: 10.3390/genes15030332] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 06/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway serves as a master regulator of cell growth, proliferation, and survival. Upregulation of the mTOR pathway has been shown to cause malformations of cortical development, medically refractory epilepsies, and neurodevelopmental disorders, collectively described as mTORopathies. Tuberous sclerosis complex (TSC) serves as the prototypical mTORopathy. Characterized by the development of benign tumors in multiple organs, pathogenic variants in TSC1 or TSC2 disrupt the TSC protein complex, a negative regulator of the mTOR pathway. Variants in critical domains of the TSC complex, especially in the catalytic TSC2 subunit, correlate with increased disease severity. Variants in less crucial exons and non-coding regions, as well as those undetectable with conventional testing, may lead to milder phenotypes. Despite the assumption of complete penetrance, expressivity varies within families, and certain variants delay disease onset with milder neurological effects. Understanding these genotype-phenotype correlations is crucial for effective clinical management. Notably, 15% of patients have no mutation identified by conventional genetic testing, with the majority of cases postulated to be caused by somatic TSC1/TSC2 variants which present complex diagnostic challenges. Advancements in genetic testing, prenatal screening, and precision medicine hold promise for changing the diagnostic and treatment paradigm for TSC and related mTORopathies. Herein, we explore the genetic and molecular mechanisms of TSC and other mTORopathies, emphasizing contemporary genetic methods in understanding and diagnosing the condition.
Collapse
Affiliation(s)
- Alice Man
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matteo Di Scipio
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shan Grewal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elisabetta Trinari
- Division of Developmental Pediatrics, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
6
|
Whitney R, Jain P. Memantine: a novel treatment for children with developmental and epileptic encephalopathies. Brain 2023; 146:796-798. [PMID: 36732672 DOI: 10.1093/brain/awad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
This scientific commentary refers to ‘Randomized placebo-controlled crossover trial of memantine in children with epileptic encephalopathy’ by Schiller et al. (https://doi.org/10.1093/brain/awac380).
Collapse
Affiliation(s)
- Robyn Whitney
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Stredny C, Rotenberg A, Leviton A, Loddenkemper T. Systemic inflammation as a biomarker of seizure propensity and a target for treatment to reduce seizure propensity. Epilepsia Open 2023; 8:221-234. [PMID: 36524286 PMCID: PMC9978091 DOI: 10.1002/epi4.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
People with diabetes can wear a device that measures blood glucose and delivers just the amount of insulin needed to return the glucose level to within bounds. Currently, people with epilepsy do not have access to an equivalent wearable device that measures a systemic indicator of an impending seizure and delivers a rapidly acting medication or other intervention (e.g., an electrical stimulus) to terminate or prevent a seizure. Given that seizure susceptibility is reliably increased in systemic inflammatory states, we propose a novel closed-loop device where release of a fast-acting therapy is governed by sensors that quantify the magnitude of systemic inflammation. Here, we review the evidence that patients with epilepsy have raised levels of systemic indicators of inflammation than controls, and that some anti-inflammatory drugs have reduced seizure occurrence in animals and humans. We then consider the options of what might be incorporated into a responsive anti-seizure system.
Collapse
Affiliation(s)
- Coral Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Leviton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Whitney R, Zak M, Haile D, Nabavi Nouri M. The state of pediatric tuberous sclerosis complex epilepsy care: Results from a national survey. Epilepsia Open 2022; 7:718-728. [PMID: 36161285 PMCID: PMC9712483 DOI: 10.1002/epi4.12652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Epilepsy associated with tuberous sclerosis complex (TSC) can be challenging to treat and is associated with significant disease burden. Our objective was to better understand the state of epilepsy care of TSC amongst pediatric neurologists in Canada, identify gaps in care and determine whether access to a dedicated TSC clinic has an impact on epilepsy management. METHODS A survey was developed after a literature review and discussion amongst two pediatric epileptologists and one nurse practitioner with expertise in TSC about the state of epilepsy care of TSC patients in Canada. Canadian pediatric neurologists were asked to participate in sharing their experiences via an anonymous web-based survey through the Canadian League Against Epilepsy (CLAE) and the Canadian Neurological Sciences Federation (CNSF). RESULTS Fifty-seven responses were received. Access to a dedicated TSC clinic was reported by 25% (n = 14). Sixty percent (n = 34) reported performing serial EEG monitoring in infants with TSC and 57% (n = 33) started prophylactic antiseizure therapy when EEG abnormalities were detected, regardless of whether there was access to a TSC clinic (P = .06 and P = .29, respectively). While 52% (n = 29) did not feel comfortable prescribing mTORi for epilepsy, 65% (n = 36) indicated they would consider it with additional training. Epilepsy surgery was offered in 93% (n = 13) of centers with a dedicated TSC clinic but only 45% of centers without a TSC clinic (n = 19) (P = .002). SIGNIFICANCE Our findings demonstrate the variability in neurological care of pediatric patients with TSC as it pertains to epilepsy management. There is a need for the establishment of epilepsy practice guidelines and a national network to support clinical practice, research, and education.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of PaediatricsMcMaster UniversityHamiltonOntarioCanada
| | - Maria Zak
- Division of Neurology, Department of PaediatricsThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Denait Haile
- Department of Paediatrics, Schulich School of Dentistry and MedicineWestern UniversityLondonOntarioCanada
| | - Maryam Nabavi Nouri
- Department of Paediatrics, Schulich School of Dentistry and MedicineWestern UniversityLondonOntarioCanada
- Children's Health Research InstituteLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|