1
|
Tekavec E, Nilsson T, Dahlin LB, Huynh E, Nordander C, Riddar J, Kåredal M. Serum levels of biomarkers related to severity staging of Raynaud's phenomenon, neurosensory manifestations, and vibration exposure in patients with hand-arm vibration injury. Sci Rep 2024; 14:18128. [PMID: 39103464 PMCID: PMC11300662 DOI: 10.1038/s41598-024-68846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Our aim was to explore possible relationships between serum levels of biomarkers in patients with hand-arm vibration injury in relation to the severity of the vascular, i.e., Raynaud's phenomenon (RP), and neurosensory manifestations, the current exposure level, and the duration of exposure. This study was of case series design and involved 92 patients diagnosed with hand-arm vibration injury. Jonckheere's trend test was used to assess any association between serum levels of biomarkers and RP as well as neurosensory manifestations, graded by the International Consensus Criteria. Generalized linear models with adjustment for possible confounders were also used for associations between serum levels of biomarkers and; (1) severity of RP recorded as the extent of finger blanching calculated with Griffin score, (2) vibration perception thresholds, (3) magnitude of current exposure as [A(8); (m/s2)] value, and (4) the duration of exposure in years. Serum levels of thrombomodulin, von Willebrand factor, calcitonin gene related peptide (CGRP), heat shock protein 27, and caspase-3 were positively associated with severity of RP. Serum levels of CGRP were positively associated with the neurosensory component. No associations with exposure were shown for these biomarkers. For Intercellular adhesion molecule 1 and monocyte chemoattractant protein 1, no associations were found with neither severity nor exposure. Levels of serum biomarkers associated with endothelial injury or dysfunction, inflammation, vasodilation, neuroprotection, and apoptosis were positively associated with the severity of hand-arm vibration injury.
Collapse
Affiliation(s)
- Eva Tekavec
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 00, Lund, Sweden.
| | - Tohr Nilsson
- Division of Sustainable Health and Medicine, Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, 221 00, Lund, Sweden
| | - Elizabeth Huynh
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63, Lund, Sweden
| | - Catarina Nordander
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 00, Lund, Sweden
| | - Jakob Riddar
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 00, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 221 00, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 63, Lund, Sweden
| |
Collapse
|
2
|
Shahouzehi B, Masoumi-Ardakani Y, Fallah H, Aminizadeh S. Evaluation of the effect of Exercise Trainings and CGRP receptor antagonist (BIBN 4096) on mitochondrial dynamic in the hippocampus of male Wistar rats. Neurosci Lett 2024; 828:137752. [PMID: 38552868 DOI: 10.1016/j.neulet.2024.137752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exercise training showed beneficial effects on brain. The purpose of the present study is to evaluate the effect of six weeks of high-intensity interval training (HIIT) and Endurance training (ET) with calcitonin gene-related peptide (CGRP) receptor antagonist on the expression of genes involved in mitochondrial dynamics and apoptosis in hippocampal tissue of male Wistar rats. METHODS In this study, forty-two healthymale Wistar rats (8-week) were randomly divided into 6 groups (n = 7) as follow; 1) Control; 2) HIIT which performed 6 weeks of HIIT; 3) ET which performed 6 weeks of endurance training; 4) CGRPi received 10 mg/kg CGRP receptor antagonist every day at the last 2 weeks; 5) CGRPi-HIIT performed HIIT and received CGRP receptor antagonist; 6) CGRPi-ET performed ET and received CGRP receptor antagonist. Real-time PCR (2-ΔΔCT) and western blotting were employedto measure the expression of genes and protein, respectively. RESULTS HIIT and ET significantly increased Bcl-2, Pgc-1α, Sirt3, and Nrf-1 gene expression in the hippocampal tissue (p < 0.05, p < 0.01, p < 0.01, and p < 0.001, respectively). ET-CGRPi and HIIT-CGRPi significantly increased Sirt3, Pgc-1α, and Nrf-1 gene expression compared to the control group (p < 0.05, p < 0.01, and p < 0.05, respectively). CONCLUSION ET and HIIT-induced physiological alterations in the hippocampus. In fact, this modulation showed protective properties in the hippocampusvia up regulation of Bcl-2, Pgc-1α, Nrf-1, and Sirt3 gene expression. CGRPi did not cause gene or protein changes harmful to mitochondrial dynamic balance and apoptosis in the hippocampus of rats.
Collapse
Affiliation(s)
- Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Zhu J, Chen YH, Ji JJ, Lu CX, Liu ZF. Calcitonin gene-related peptide inhibits neuronal apoptosis in heatstroke rats via PKA/p-CREB pathway. Chin J Traumatol 2024; 27:18-26. [PMID: 37423838 PMCID: PMC10859278 DOI: 10.1016/j.cjtee.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway. METHODS We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. RESULTS Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. CONCLUSIONS CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Ya-Hong Chen
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Jing-Jing Ji
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Cheng-Xiang Lu
- Department of Intensive Care Unit, Zhongshan Hospital Xiamen University, Xiamen, Fujian province, 361004, China
| | - Zhi-Feng Liu
- Department of Medical Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
4
|
Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci 2023; 17:1184766. [PMID: 37529236 PMCID: PMC10387546 DOI: 10.3389/fnins.2023.1184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability and mortality rates, which severely burdens patients, their families, and society. At present, thrombolytic therapy is mainly used for the treatment of ischemic strokes. Even though it can achieve a good effect, thrombolytic recanalization can cause reperfusion injury. Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a neuroprotective role in the process of ischemia-reperfusion injury. By combining with its specific receptors, CGRP can induce vasodilation of local cerebral ischemia by directly activating the cAMP-PKA pathway in vascular smooth muscle cells and by indirectly activating the NO-cGMP pathway in an endothelial cell-dependent manner,thus rapidly increasing ischemic local blood flow together with reperfusion. CGRP, as a key effector molecule of neurogenic inflammation, can reduce the activation of microglia, downregulates Th1 classical inflammation, and reduce the production of TNF-α, IL-2, and IFN-γ and the innate immune response of macrophages, leading to the reduction of inflammatory factors. CGRP can reduce the overexpression of the aquaporin-4 (AQP-4) protein and its mRNA in the cerebral ischemic junction, and play a role in reducing cerebral edema. CGRP can protect endothelial cells from angiotensin II by reducing the production of oxidants and protecting antioxidant defense. Furthermore, CGRP-upregulated eNOS can further induce VEGF expression, which then promotes the survival and angiogenesis of vascular endothelial cells. CGRP can also reduce apoptosis by promoting the expression of Bcl-2 and inhibiting the expression of caspase-3. These effects suggest that CGRP can reduce brain injury and repair damaged nerve function. In this review, we focused on the role of CGRP in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiyong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junhui Bai
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Keling Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Kumar A, Williamson M, Hess A, DiPette DJ, Potts JD. Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine. Front Physiol 2022; 13:826122. [PMID: 35222088 PMCID: PMC8874280 DOI: 10.3389/fphys.2022.826122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Maelee Williamson
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Andrew Hess
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
- *Correspondence: Jay D. Potts,
| |
Collapse
|
6
|
de Holanda GS, dos Santos Valença S, Carra AM, Lichtenberger RCL, de Castilho B, Franco OB, de Moraes JA, Schanaider A. Translational Application of Fluorescent Molecular Probes for the Detection of Reactive Oxygen and Nitrogen Species Associated with Intestinal Reperfusion Injury. Metabolites 2021; 11:metabo11120802. [PMID: 34940560 PMCID: PMC8705498 DOI: 10.3390/metabo11120802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute mesenteric ischemia, caused by an abrupt interruption of blood flow in the mesenteric vessels, is associated with high mortality. When treated with surgical interventions or drugs to re-open the vascular lumen, the reperfusion process itself can inflict damage to the intestinal wall. Ischemia and reperfusion injury comprise complex mechanisms involving disarrangement of the splanchnic microcirculatory flow and impairment of the mitochondrial respiratory chain due to initial hypoxemia and subsequent oxidative stress during the reperfusion phase. This pathophysiologic process results in the production of large amounts of reactive oxygen (ROS) and nitrogen (RNS) species, which damage deoxyribonucleic acid, protein, lipids, and carbohydrates by autophagy, mitoptosis, necrosis, necroptosis, and apoptosis. Fluorescence-based systems using molecular probes have emerged as highly effective tools to monitor the concentrations and locations of these often short-lived ROS and RNS. The timely and accurate detection of both ROS and RNS by such an approach would help to identify early injury events associated with ischemia and reperfusion and increase overall clinical diagnostic sensitivity. This abstract describes the pathophysiology of intestinal ischemia and reperfusion and the early biological laboratory diagnosis using fluorescent molecular probes anticipating clinical decisions in the face of an extremely morbid disease.
Collapse
Affiliation(s)
- Gustavo Sampaio de Holanda
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
- Correspondence: ; Tel.: +55-21-9657-13794
| | - Samuel dos Santos Valença
- Redox Biology Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.d.S.V.); (J.A.d.M.)
| | - Amabile Maran Carra
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Renata Cristina Lopes Lichtenberger
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Bianca de Castilho
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - Olavo Borges Franco
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| | - João Alfredo de Moraes
- Redox Biology Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.d.S.V.); (J.A.d.M.)
| | - Alberto Schanaider
- Centre of Experimental Surgery, Post Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 219491-590, Brazil; (A.M.C.); (R.C.L.L.); (B.d.C.); (O.B.F.); (A.S.)
| |
Collapse
|
7
|
Li M, Zheng Z. Protective effect of parecoxib sodium against ischemia reperfusion‑induced intestinal injury. Mol Med Rep 2021; 24:776. [PMID: 34498709 PMCID: PMC8436217 DOI: 10.3892/mmr.2021.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia reperfusion (I/R)-induced intestinal injury is a pathophysiological process leading to oxidative stress and inflammatory responses, and revealing its underlying mechanisms is essential for developing therapeutic strategies. Cyclooxygenase (COX) has been reported to be involved in I/R injury. Parecoxib sodium, a selective inhibitor for COX-2, exerts protective effects, such as reducing I/R-induced injuries in the heart, kidney and brain. However, the potential role of parecoxib sodium in protecting the small intestine against I/R-induced injury has rarely been investigated. Therefore, the aim of the present study was to elucidate the effects and potential mechanisms of parecoxib sodium in I/R-induced intestinal injury. In total, 60 Sprague-Dawley rats were randomly divided into four groups: Control (sham operation) group, intestinal I/R group, 10 mg/kg parecoxib sodium-pre-treated I/R (I/R + Pare/10) group and the 20 mg/kg parecoxib sodium-pre-treated I/R (I/R + Pare/20) group. A regular I/R model was established to induce the intestinal injury in rats. Parecoxib sodium at 10 or 20 mg/kg was intraperitoneally administered into rats in both I/R + Pare groups once daily for 5 consecutive days prior to ischemia. Blood samples and small intestinal tissues were collected at 2 h after reperfusion. Changes in the levels of malondialdehyde, nitric oxide, interleukin (IL)-1β, IL-8, intercellular cell adhesion molecule-1 and IL-10, as well as the total antioxidant capacity were determined using ELISA, as were the activities of superoxidase dismutase and myeloperoxidase. Furthermore, the protein expression levels of total caspase-3, cleaved caspase-3, Bcl-2 and Bax were examined via western blot analysis. In addition, the daily survival rate post-reperfusion was examined for 7 days. It was revealed that parecoxib sodium increased the levels of antioxidants and suppressed the intestinal oxidative injury induced by I/R. Moreover, parecoxib sodium downregulated the expression levels of the proinflammatory factors, but upregulated the expression levels of anti-inflammatory factors. The results also demonstrated that parecoxib sodium attenuated I/R-induced apoptosis and increased the survival rate of rats. Thus, administration of parecoxib sodium prior to intestinal I/R attenuated intestinal injury and increased the rat survival rate by inhibiting I/R-induced inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Mei Li
- Department of Anesthesiology, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Zhi Zheng
- Department of Anesthesiology, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
8
|
Oxidative Stress Induces Chondrocyte Apoptosis through Caspase-Dependent and Caspase-Independent Mitochondrial Pathways and the Antioxidant Mechanism of Angelica Sinensis Polysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3240820. [PMID: 33224431 PMCID: PMC7669361 DOI: 10.1155/2020/3240820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
Introduction Chondrocyte apoptosis is considered one of the pathogenic factors of osteoarthritis (OA), but its importance in the pathogenesis of OA remains unclear. Recent research adds progress to the knowledge that the mitochondrial signaling pathway mediates chondrocyte apoptosis in OA. Method Rat chondrocyte exposed to H2O2 was used as the experimental oxidative stress model. Chondrocyte viability was tested by cell counting kit-8 (CCK-8) assay. Cell apoptosis and ROS were tested by flow cytometry. Contents of malondialdehyde (MDA), catalase (CAT), caspase-3, caspase-9, cytochrome C, superoxide dismutase (SOD)-2, and adenosine triphosphate (ATP) were evaluated by biochemical detection. The expressions of related genes and proteins were assessed by quantitative polymerase chain reaction (qPCR) and western blot. Results H2O2 provokes oxidative stress and decreases the viability of chondrocyte, which leads to the release of cytochrome C and inhibition of SOD-2 activity. The damage of mitochondrion disturbs the energy metabolism of chondrocyte and eventually induces chondrocyte apoptosis through the mitochondrial pathway. Furthermore, pretreated with anglicasinensis polysaccharide (ASP) or caspase inhibitors increase the expression of Bcl-2 and Bcl-xL but do not work for the expression of Bax and Bad. Conclusion Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways. ASP protects chondrocyte from H2O2-induced oxidative stress and subsequent cell injury through its antioxidant effect by inhibiting the caspase pathway.
Collapse
|
9
|
Luo Y, Duan X, Bian L, Chen Z, Kuang L, Li Y. Ischemic Preconditioning Preventing Downregulation of miR-182 Protects Intestine Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis. Arch Med Res 2019; 50:241-248. [DOI: 10.1016/j.arcmed.2019.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023]
|
10
|
Lu CX, Qiu T, Liu ZF, Su L, Cheng B. Calcitonin gene-related peptide has protective effect on brain injury induced by heat stroke in rats. Exp Ther Med 2017; 14:4935-4941. [PMID: 29201197 PMCID: PMC5704302 DOI: 10.3892/etm.2017.5126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/22/2017] [Indexed: 11/13/2022] Open
Abstract
Heat stroke often leads to multiple organ dysfunction syndrome (MODS) with a neurological morbidity of 30%. Current studies suggested that pathophysiological responses to heat stroke may be due to a systemic inflammatory response syndrome and a series of peptidergic nerve reactions. The mechanisms underlying the high neurological morbidity in heat stroke have remained largely elusive. In recent years, calcitonin gene-related peptide (CGRP) has been considered to have a positive role in central nervous system injury. The present study investigated the influence of CGRP on brain injury induced by heat stroke. A rat model of heat stroke was established in a pre-warmed artificial climate chamber with a temperature of 35.5±0.5°C and a relative humidity of 60±5%. The rectal core temperature (Tc) was monitored. Heat stress was halted at a Tc of no more than 41°C A bolus injection of CGRP was administered to each rat in the HS+CGRP group and a bolus injection of CGRP8-37 was administered to each rat in the HS+CGRP8-37 group after heat stress. After 2 h, electroencephalograms were recorded and the pathological morphology of brain tissue as well as brain cell apoptosis and caspase-3 protein levels in the brain were measured. The EEG of rats in the HS+CGRP group was characterized by a short- to long-term α-wave and low-voltage β-waves as well as a large amount of intermittent δ- and θ-waves. Compared with the HS group, the θ-wave decreased and the α-wave increased significantly (P<0.05). Slight pathological damage of nerve cells appeared in the HS+CGRP group. Greater damage was observed in HS+CGRP8-37 group with neural cell shrinkage, volume reduction, nuclear pyknosis, disappearance of part of the nuclear membrane and cell necrosis. In the HS+CGRP group, apoptotic cells and caspase-3 protein in the brain were significantly decreased when compared with those in the HS group (P<0.05), while they were significantly increased in the HS+CGRP8-37 group (P<0.05 vs. HS group). The results of the present study reflected that CGRP has a protective effect on early-stage brain injury induced by heat stroke in rats.
Collapse
Affiliation(s)
- Cheng-Xiang Lu
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510010, P.R. China.,Department of Intensive Care Unit, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ting Qiu
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Zhi-Feng Liu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - Biao Cheng
- Department of Plastic Surgery, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
11
|
Hummitzsch L, Zitta K, Berndt R, Kott M, Schildhauer C, Parczany K, Steinfath M, Albrecht M. Doxycycline protects human intestinal cells from hypoxia/reoxygenation injury: Implications from an in-vitro hypoxia model. Exp Cell Res 2017; 353:109-114. [PMID: 28300560 DOI: 10.1016/j.yexcr.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a grave clinical emergency and associated with high morbidity and mortality rates. Based on the complex underlying mechanisms, a multimodal pharmacological approach seems necessary to prevent intestinal I/R injury. The antibiotic drug doxycycline, which exhibits a wide range of pleiotropic therapeutic properties, might be a promising candidate for also reducing I/R injury in the intestine. To investigate possible protective effects of doxycycline on intestinal I/R injury, human intestinal CaCo-2 cells were exposed to doxycycline at clinically relevant concentrations. In order to mimic I/R injury, CaCo-2 were thereafter subjected to hypoxia/reoxygenation by using our recently described two-enzyme in-vitro hypoxia model. Investigations of cell morphology, cell damage, apoptosis and hydrogen peroxide formation were performed 24h after the hypoxic insult. Hypoxia/reoxygenation injury resulted in morphological signs of cell damage, elevated LDH concentrations in the respective culture media (P<0.001) and increased protein expression of proapoptotic caspase-3 (P<0.05) in the intestinal cultures. These events were associated with increased levels hydrogen peroxide (P<0.001). Preincubation of CaCo-2 cells with different concentrations of doxycycline (5µM, 10µM, 50µM) reduced the hypoxia induced signs of cell damage and LDH release (P<0.001 for all concentrations). The reduction of cellular damage was associated with a reduced expression of caspase-3 (5µM, P<0.01; 10µM, P<0.01; 50µM, P<0.05), while hydrogen peroxide levels remained unchanged. In summary, doxycycline protects human intestinal cells from hypoxia/reoxygenation injury in-vitro. Further animal and clinical studies are required to prove the protective potential of doxycycline on intestinal I/R injury under in-vivo conditions.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Karina Zitta
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christin Schildhauer
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Kerstin Parczany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Markus Steinfath
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Albrecht
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| |
Collapse
|