1
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
2
|
Park ZM, Belnap E, Remillard M, Rose MD. Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics 2023; 224:iyad043. [PMID: 36930734 PMCID: PMC10474941 DOI: 10.1093/genetics/iyad043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
N6-Methyladenosine (m6A) is among the most abundant modifications of eukaryotic mRNAs. mRNA methylation regulates many biological processes including playing an essential role in meiosis. During meiosis in the budding yeast, Saccharomyces cerevisiae, m6A levels peak early, before the initiation of the meiotic divisions. High-throughput studies suggested, and this work confirms that the uncharacterized protein Ygl036wp interacts with Kar4p, a component of the mRNA m6A-methyltransferase complex. Protein structure programs predict that Ygl036wp folds like VIRMA/Virilizer/VIR, which is involved in mRNA m6A-methylation in higher eukaryotes. In addition, Ygl036wp contains conserved motifs shared with VIRMA/Virilizer/VIR. Accordingly, we propose the name VIR1 for budding yeast ortholog of VIRMA/Virilizer/VIR 1. Vir1p interacts with all other members of the yeast methyltransferase complex and is itself required for mRNA m6A methylation and meiosis. In the absence of Vir1p proteins comprising the methyltransferase complex become unstable, suggesting that Vir1p acts as a scaffold for the complex. The vir1Δ/Δ mutant is defective for the premeiotic S-phase, which is suppressed by overexpression of the early meiotic transcription factor IME1; additional overexpression of the translational regulator RIM4 is required for sporulation. The vir1Δ/Δ mutant exhibits reduced levels of IME1 mRNA, as well as transcripts within Ime1p's regulon. Suppression by IME1 revealed an additional defect in the expression of the middle meiotic transcription factor, Ndt80p (and genes in its regulon), which is rescued by overexpression of RIM4. Together, these data suggest that Vir1p is required for cells to initiate the meiotic program and for progression through the meiotic divisions and spore formation.
Collapse
Affiliation(s)
- Zachory M Park
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Ethan Belnap
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Matthew Remillard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mark D Rose
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Park ZM, Belnap E, Remillard M, Rose MD. Vir1p, the Yeast Homolog of Virilizer, is Required for mRNA m 6 A Methylation and Meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527493. [PMID: 36798303 PMCID: PMC9934557 DOI: 10.1101/2023.02.07.527493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
N 6 -Methyladenosine (m 6 A) is one of the most abundant modifications found on eukaryotic mRNAs. mRNA methylation regulates a host of biological processes including meiosis, a specialized diploid cell division program that results in the formation of haploid cells (gametes). During budding yeast meiosis, m 6 A levels peak early, before the initiation of the meiotic divisions. High-throughput studies and work from our lab showed that Ygl036wp, a previously uncharacterized protein interacts with Kar4p, a meiotic protein required for mRNA m 6 A-methylation. Ygl036wp has no discernable domains except for several intrinsically disordered regions. However, protein folding prediction tools showed that Ygl036wp folds like VIRMA/Virilizer/VIR, which is involved in mRNA m 6 A-methylation in higher eukaryotes. In addition, Ygl036wp has several conserved motifs shared with VIRMA/Virilizer/VIR proteins. Accordingly, we propose to call the gene VIR1 for budding yeast ortholog of VIR MA/Virilizer/VIR 1 . In support, Vir1p interacts with all other members of the yeast methyltransferase complex and is required for mRNA m 6 A methylation and meiosis. Vir1p is required for the stability of proteins comprising the methyltransferase complex, suggesting that Vir1p acts as a scaffold to stabilize the complex. The vir1 Δ/Δ mutant is defective for premeiotic S-phase, which is suppressed by overexpression of the early meiotic transcription factor IME1; additional overexpression of the translational regulator RIM4 is required for sporulation. Consistent with IME1 suppression, vir1 Δ/Δ exhibits a defect in the abundance of IME1 mRNA, as well as transcripts within Ime1p's regulon. Suppression by IME1 revealed a defect in the expression of the middle meiotic transcription factor, Ndt80p (and genes in its regulon), which is rescued by additional overexpression of RIM4 . Together, these data suggest that Vir1p is required for cells to initiate the meiotic program and for progression through the meiotic divisions and spore formation. Author Summary Ygl036wp is a previously uncharacterized protein that we propose to name Vir1p (budding yeast ortholog of VIR MA/Virilizer/VIR 1 ). Work from our lab and others initially found an interaction between Vir1p and members of the yeast mRNA methyltransferase complex (Kar4p and Mum2p). We found that Vir1p interacts with all known members of the methyltransferase complex and is required for mRNA methylation. Vir1p is required early in meiosis; vir1 Δ/Δ mutants arrest due to the reduced expression of Ime1p. Lower levels of Ime1p cause severe disruption to the meiotic transcriptome in vir1 Δ/Δ. The vir1 Δ/Δ meiotic defect can be partially suppressed by the overexpression of IME1 ; full suppression requires overexpression of both IME1 and RIM4 . Using recent advances in protein folding predictions, we found that Vir1p is a remote homolog of VIRMA/Virilizer/VIR and shares conserved motifs with the protein from other organisms. Vir1p, like VIRMA/Virilizer/VIR, stabilizes the methyltransferase complex.
Collapse
Affiliation(s)
- Zachory M. Park
- Department of Biology, Georgetown University, Washington DC, 20057, USA
| | - Ethan Belnap
- Department of Biology, Georgetown University, Washington DC, 20057, USA
| | - Matthew Remillard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Mark D. Rose
- Department of Biology, Georgetown University, Washington DC, 20057, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
4
|
Shahi S, Fokkens L, Houterman PM, Rep M. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis. Fungal Genet Biol 2016; 95:49-57. [PMID: 27531696 DOI: 10.1016/j.fgb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
Abstract
Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.
Collapse
Affiliation(s)
- Shermineh Shahi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra M Houterman
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi. G3-GENES GENOMES GENETICS 2015; 5:2783-92. [PMID: 26497142 PMCID: PMC4683649 DOI: 10.1534/g3.115.021378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiaeNdt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species, include regulation of meiosis, sexual development, biofilm formation, drug resistance, virulence, the response to nutrient stress and programmed cell death. The protein kinase Ime2 regulates the single NDT80 gene present in S. cerevisiae. In this study we used a genetic approach to investigate whether the Aspergillus nidulansIme2 homolog, ImeB, and/or protein kinases MpkC, PhoA and PhoB regulate the two NDT80-like genes (xprG and ndtA) in A. nidulans. Disruption of imeB, but not mpkC, phoA or phoB, led to increased extracellular protease activity and a defect in mycotoxin production similar to the xprG1 gain-of-function mutation. Quantitative RT-PCR showed that ImeB is a negative regulator of xprG expression and XprG is a negative regulator of xprG and ndtA expression. Thus, in contrast to Ime2, which is a positive regulator of NDT80 in S. cerevisiae, ImeB is a negative regulator as in Neurospora crassa. However, the ability of Ndt80 to autoregulate NDT80 is conserved in A. nidulans though the autoregulatory effect is negative rather than positive. Unlike N. crassa, a null mutation in imeB does not circumvent the requirement for XprG or NdtA. These results show that the regulatory activities of Ime2 and Ndt80-like proteins display an extraordinarily level of evolutionary flexibility.
Collapse
|
6
|
Acosta I, Ontoso D, San-Segundo PA. The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway. Mol Biol Cell 2011; 22:3478-90. [PMID: 21795394 PMCID: PMC3172271 DOI: 10.1091/mbc.e11-06-0482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes. Accurate distribution of genetic information to the meiotic progeny is ensured by the action of the meiotic recombination checkpoint. The function of the evolutionarily conserved polo-like kinase in this meiotic surveillance mechanism is described. Defects in chromosome synapsis and/or meiotic recombination activate a surveillance mechanism that blocks meiotic cell cycle progression to prevent anomalous chromosome segregation and formation of aberrant gametes. In the budding yeast zip1 mutant, which lacks a synaptonemal complex component, the meiotic recombination checkpoint is triggered, resulting in extremely delayed meiotic progression. We report that overproduction of the polo-like kinase Cdc5 partially alleviates the meiotic prophase arrest of zip1, leading to the formation of inviable meiotic products. Unlike vegetative cells, we demonstrate that Cdc5 overproduction does not stimulate meiotic checkpoint adaptation because the Mek1 kinase remains activated in zip1 2μ-CDC5 cells. Inappropriate meiotic divisions in zip1 promoted by high levels of active Cdc5 do not result from altered function of the cyclin-dependent kinase (CDK) inhibitor Swe1. In contrast, CDC5 overexpression leads to premature induction of the Ndt80 transcription factor, which drives the expression of genes required for meiotic divisions, including CLB1. We also show that depletion of Cdc5 during meiotic prophase prevents the production of Ndt80 and that CDK activity contributes to the induction of Ndt80 in zip1 cells overexpressing CDC5. Our results reveal a role for Cdc5 in meiotic checkpoint control by regulating Ndt80 function.
Collapse
Affiliation(s)
- Isabel Acosta
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
7
|
The Ime2 protein kinase enhances the disassociation of the Sum1 repressor from middle meiotic promoters. Mol Cell Biol 2009; 29:4352-62. [PMID: 19528232 DOI: 10.1128/mcb.00305-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic development in Saccharomyces cerevisiae (sporulation) is controlled by the sequential transcription of temporally distinct sets of meiosis-specific genes. The induction of middle genes controls exit from meiotic prophase, the completion of the nuclear divisions, and spore formation. Middle promoters are controlled through DNA elements termed middle sporulation elements (MSEs) that are bound by the Sum1 repressor during vegetative growth and by the Ndt80 activator during meiosis. It has been proposed that the induction of middle promoters is controlled by competition between Ndt80 and Sum1 for MSE occupancy. Here, we show that the Sum1 repressor can be removed from middle promoters in meiotic cells independent of Ndt80 expression. This process requires the phosphorylation of Sum1 by the meiosis-specific cyclin-dependent kinase-like kinase Ime2. The deletion of HST1, which encodes a Sir2 paralog that interacts with Sum1, bypasses the requirement for this phosphorylation. These findings suggest that in the presence of Ndt80, Sum1 may be displaced from MSEs through a competition-based mechanism but that in the absence of Ndt80, Sum1 is removed from chromatin in a separate pathway requiring the phosphorylation of Sum1 by Ime2 and the inhibition of Hst1.
Collapse
|
8
|
Raithatha SA, Stuart DT. The Saccharomyces cerevisiae CLB5 promoter contains two middle sporulation elements (MSEs) that are differentially regulated during sporulation. Yeast 2008; 25:259-72. [PMID: 18327887 DOI: 10.1002/yea.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The B-type cyclins Clb5 and Clb6 are essential activators of DNA replication during sporulation in Saccharomyces cerevisiae. The expression of CLB5 is maximally induced during the middle phase of sporulation by the transcription factor Ndt80. We have performed an analysis of the CLB5 promoter and have identified two middle sporulation elements (MSEs) that act as binding sites for Ndt80. Although both MSE sequences bind Ndt80 in vitro, they display differential effectiveness in their ability to function as cis-acting regulatory sequences in vivo. Mutation of both MSE sequences in the CLB5 promoter profoundly reduces the induction of CLB5 transcription during the middle phase of sporulation but results in no obvious defect in progression through meiosis and sporulation, implying that the Ndt80-dependent induction of CLB5 is not required for effective DNA replication or chromosome division.
Collapse
Affiliation(s)
- Sheetal A Raithatha
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | |
Collapse
|
9
|
Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J, Stuart D. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 2006; 399:151-60. [PMID: 16776651 PMCID: PMC1570159 DOI: 10.1042/bj20060363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb-Cdc28 inhibitor Sic1. In proliferating cells Cln-Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCF(Cdc4) and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCF(Cdc4) was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCF(Cdc4). In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.
Collapse
Affiliation(s)
- Chantelle Sedgwick
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Matthew Rawluk
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Decesare
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Sheetal Raithatha
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - James Wohlschlegel
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - Paul Semchuk
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - Michael Ellison
- ‡Institute for Biomolecular Design, 367 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2H7, Canada
| | - John Yates
- †The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037 U.S.A
| | - David Stuart
- *Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- To whom correspondence should be addressed (email )
| |
Collapse
|