1
|
Resende CAA, Ribeiro AJ, Gandra IB, Silva KA, Lopes LDS, Barcelos ICDS, Couto CAP, de Faria MT, Pereira SP, Xavier SR, Machado JM, da Paz MC, Chaves AT, Coelho EAF, Giunchetti RC, Chávez-Fumagalli MA, Dutra WO, Gonçalves AAM, Galdino AS. Recombinant proteins as promising antigens applied to the immunodiagnosis of Chagas disease: a scoping review. Front Microbiol 2024; 15:1420226. [PMID: 39139374 PMCID: PMC11319188 DOI: 10.3389/fmicb.2024.1420226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is an important public health problem, occurring mainly in Latin America. The disease has a major social and economical effect, negatively impacting the life of the infected individuals, and bringing great costs to public health. An early and accurate diagnosis is essential for administration of early treatment. In addition, prognostic tests may aid disease management, decreasing hospitalization costs. However, the serological diagnostic scenario for CD still faces several challenges, making the development of new diagnostic kits a pressing matter. Facing this scenario, several researchers have expanded efforts in developing and testing new antigens, such as recombinant proteins and recombinant multiepitope proteins, with promising results. These recombinant antigens offer several advantages, such as improved sensitivity and specificity, in addition to facilitated scaling. Also, it has been possible to observe a rising number of studies using ELISA and point-of-care platforms, employing these antigens in the past few years. Among them, recombinant proteins were the most applied antigens, demonstrating great capacity to discriminate between positive and negative samples. Although fewer in number, recombinant multiepitope proteins also demonstrated an improved diagnostic performance. Indeed, a great number of studies employing these antigens showed sensitivity and specificity values above 90%, greatly impacting diagnostic accuracy. Nevertheless, despite the good results found, it is still possible to observe some bottlenecks in the development of new antigens, such as the scarcity of tests with sera from the acute phase and the variability of results in different geographic areas. In this sense, aiming to contribute to control and health programs, the continuous search for a more accurate serological diagnosis is essential, both for the acute and chronic phases of the disease.
Collapse
Affiliation(s)
- Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Anna Júlia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Isabelle Caroline dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Mariana Campos da Paz
- Laboratory of Bioactives and Nanobiotechnology, Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Ana Thereza Chaves
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, National Institute of Science and Technology on Tropical Diseases (INCT-T), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, National Institute of Science and Technology on Tropical Diseases (INCT-T), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| |
Collapse
|
2
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
3
|
Daian E Silva DSO, Cox LJ, Rocha AS, Lopes-Ribeiro Á, Souza JPC, Franco GM, Prado JLC, Pereira-Santos TA, Martins ML, Coelho-Dos-Reis JGA, Gomes-de-Pinho TM, Da Fonseca FG, Barbosa-Stancioli EF. Preclinical assessment of an anti-HTLV-1 heterologous DNA/MVA vaccine protocol expressing a multiepitope HBZ protein. Virol J 2023; 20:304. [PMID: 38115107 PMCID: PMC10731796 DOI: 10.1186/s12985-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Collapse
Affiliation(s)
- D S O Daian E Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - L J Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - A S Rocha
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - Á Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - J P C Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - G M Franco
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - J L C Prado
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - T A Pereira-Santos
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - M L Martins
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
- Gerência de Desenvolvimento Técnico Científico, Fundação Centro de Hematologia e Hemoterapia do Estado de Minas Gerais - Hemominas, Belo Horizonte, Brazil
| | - J G A Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - T M Gomes-de-Pinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - F G Da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - E F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Machado JM, Pereira IAG, Maia ACG, Francisco MFC, Nogueira LM, Gandra IB, Ribeiro AJ, Silva KA, Resende CAA, da Silva JO, dos Santos M, Gonçalves AAM, Tavares GDSV, Chávez-Fumagalli MA, Campos-da-Paz M, Giunchetti RC, Rocha MODC, Chaves AT, Coelho EAF, Galdino AS. Proof of Concept of a Novel Multiepitope Recombinant Protein for the Serodiagnosis of Patients with Chagas Disease. Pathogens 2023; 12:312. [PMID: 36839584 PMCID: PMC9965379 DOI: 10.3390/pathogens12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Chagas disease remains a neglected disease that is considered to be a public health problem. The early diagnosis of cases is important to improve the prognosis of infected patients and prevent transmission. Serological tests are the method of choice for diagnosis. However, two serological tests are currently recommended to confirm positive cases. In this sense, more sensitive and specific serological tests need to be developed to overcome these current diagnosis problems. This study aimed to develop a new recombinant multiepitope protein for the diagnosis of Chagas disease, hereafter named rTC. The rTC was constructed based on amino acid sequences from different combinations of Trypanosoma cruzi antigens in the same polypeptide and tested using an enzyme-linked immunosorbent assay (ELISA) to detect different types of Chagas disease. rTC was able to discriminate between indeterminate (IND) and cardiac (CARD) cases and cross-reactive diseases, as well as healthy samples, with 98.28% sensitivity and 96.67% specificity, respectively. These data suggest that rTC has the potential to be tested in future studies against a larger serological panel for the diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Isabela Amorim Gonçalves Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ana Clara Gontijo Maia
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Lais Moreira Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Anna Julia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Michelli dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Mariana Campos-da-Paz
- Laboratório de NanoBiotecnologia & Bioativos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, Divinópolis 355901-296, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ana Thereza Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| |
Collapse
|
5
|
Dias DS, Machado JM, Ribeiro PAF, Machado AS, Ramos FF, Nogueira LM, Gonçalves AAM, Ramos LDS, Gandra IB, Coutinho FS, dos Santos M, da Silva JO, Chávez-Fumagalli MA, Teixeira-Neto RG, Chaves AT, Campos-da-Paz M, Souza AA, Giunchetti RC, Freitas SM, Lyon S, de Magalhães-Soares DF, Silveira JAG, Silva ES, Coelho EAF, Galdino AS. rMELEISH: A Novel Recombinant Multiepitope-Based Protein Applied to the Serodiagnosis of Both Canine and Human Visceral Leishmaniasis. Pathogens 2023; 12:pathogens12020302. [PMID: 36839574 PMCID: PMC9958779 DOI: 10.3390/pathogens12020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND visceral leishmaniasis (VL) is a critical public health problem in over ninety countries. The control measures adopted in Brazil have been insufficient when it comes to preventing the spread of this overlooked disease. In this context, a precise diagnosis of VL in dogs and humans could help to reduce the number of cases of this disease. Distinct studies for the diagnosis of VL have used single recombinant proteins in serological assays; however, the results have been variable, mainly in relation to the sensitivity of the antigens. In this context, the development of multiepitope-based proteins could be relevant to solving such problem. METHODS a chimeric protein (rMELEISH) was constructed based on amino acid sequences from kinesin 39 (k39), alpha-tubulin, and heat-shock proteins HSP70 and HSP 83.1, and tested in enzyme-linked immunosorbent (ELISA) for the detection of L. infantum infection using canine (n = 140) and human (n = 145) sera samples. RESULTS in the trials, rMELEISH was able to discriminate between VL cases and cross-reactive diseases and healthy samples, with sensitivity and specificity values of 100%, as compared to the use of a soluble Leishmania antigenic extract (SLA). CONCLUSIONS the preliminary data suggest that rMELEISH has the potential to be tested in future studies against a larger serological panel and in field conditions for the diagnosis of canine and human VL.
Collapse
Affiliation(s)
- Daniel Silva Dias
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Patrícia Aparecida Fernandes Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Amanda Sanchez Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Fernanda Fonseca Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Lais Moreira Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luana de Sousa Ramos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Flaviane Silva Coutinho
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Michelli dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru
| | - Rafael Gonçalves Teixeira-Neto
- Laboratório de Doenças Infecto-Parasitárias, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Ana Thereza Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Mariana Campos-da-Paz
- Laboratório de Bioativos & Nanobiotecnologia, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Amanda A. Souza
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, SP, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sonia Maria Freitas
- Laboratorio de Biofísica, Instituto de Biologia, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Sandra Lyon
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte 30622-020, MG, Brazil
| | | | - Julia Angelica Gonçalves Silveira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Eduardo Sergio Silva
- Laboratório de Doenças Infecto-Parasitárias, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
- Correspondence:
| |
Collapse
|
6
|
Zhou J, Chen J, Peng Y, Xie Y, Xiao Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022; 11:1095. [PMID: 36297152 PMCID: PMC9609281 DOI: 10.3390/pathogens11101095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
Collapse
|
7
|
Pedersen J, Moukandja IP, Ndidi S, Sørensen AL, Koumakpayi IH, Lekana-Douki JB, Vachon ML, Weis N, Kobinger G, Fausther-Bovendo H. An adaptable platform for in-house hepatitis C serology. J Virol Methods 2022; 308:114586. [PMID: 35850366 DOI: 10.1016/j.jviromet.2022.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
Serology-based diagnosis remains one of the major tools for diagnosis and surveillance of infectious diseases. However, for many neglected diseases no or only few commercial assays are available and often with prices prohibiting large scale testing in low and middle-income countries (LMICs). We developed an adaptable enzyme-linked immunoassay (ELISA) using hepatitis C virus (HCV) as a proof-of-concept application. By combining the maltose-binding-protein with a multiepitope HCV protein, we were able to obtain a high concentration of protein suitable for downstream applications. Following optimization, the assay was verified using previously tested human samples from Canada, Denmark and Gabon in parallel with the use of a commercial protein. Sensitivity and specificity were calculated to 98 % and 97 % respectively, after accounting for non-specific binding and assay optimization. This study provides a thorough description of the development, and validation of a multiepitope ELISA-based diagnostic assay against HCV, which could be implemented at low cost. The described methodology can be readily adapted to develop novel ELISA-based diagnostic assays for other infectious pathogens with well-described immunogenic epitopes. This method could improve the diagnosis of neglected diseases for which affordable diagnostic assays are lacking.
Collapse
Affiliation(s)
- Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | - Stella Ndidi
- Centre Hospitalier Universitaire de Libreville, Libreville BP2228, Gabon
| | - Anna-Louise Sørensen
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jean-Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Marie-Louise Vachon
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec G1V 4G2, Canada
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hugues Fausther-Bovendo
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada; Global Urgent and Advanced Research and Development - GUARD, 911 Rue Principale, unit 100, Batiscan, Quebec G0X 1A0, Canada.
| |
Collapse
|
8
|
Souza M, Machado J, da Silva J, Ramos L, Nogueira L, Ribeiro P, Dias D, Santos J, Santos JC, Nóbrega Y, Souza A, Freitas S, da Paz MC, Felipe M, Torres F, Galdino A. Rational design and evaluation of the recombinant multiepitope protein for serodiagnosis of rubella. Curr Pharm Biotechnol 2021; 23:1094-1100. [PMID: 34493182 DOI: 10.2174/1389201022666210907170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis for rubella is thus of pivotal importance for proper treatment. OBJECTIVE To produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. METHODS A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. RESULTS Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal rMERUB has a β leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. CONCLUSIONS The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.
Collapse
Affiliation(s)
- Marilen Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Juliana Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Jonatas da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Luana Ramos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Lais Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Patrícia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Daniel Dias
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Josiane Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - José Carlos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Yanna Nóbrega
- Laboratório de Doenças Imunogenéticase Crônico-degenerativas, Faculdade de Saúde, Departamento de Ciências Farmacêuticas, Universidade de Brasília. Brazil
| | - Amanda Souza
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Sonia Freitas
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Mariana Campos da Paz
- Laboratório de Nanobiotecnologia & Biativos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, Divinópolis, MG, 35501-296. Brazil
| | - Maria Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Fernando Torres
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Alexsandro Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| |
Collapse
|
9
|
Zhan N, Zhang L, Yang H, Zheng Y, Wei X, Wang J, Shan A. Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris. Microb Cell Fact 2021; 20:143. [PMID: 34301247 PMCID: PMC8305873 DOI: 10.1186/s12934-021-01635-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The antimicrobial peptide LL37 is produced by white blood cells (mainly neutrophils) and various epithelial cells, and has the outstanding advantages of participating in immune regulation, causing chemotaxis of immune cells and promoting wound healing. However, the central domain of LL37 needs to be improved in terms of antimicrobial activity. RESULTS In this study, the amino acid substitution method was used to improve the antimicrobial activity of the LL37 active center, and a dimeric design with a better selection index was selected. A flexible linker was selected and combined with the 6 × His-SUMO tag and LG was successfully expressed using Pichia pastoris as a host. Recombinant LG displayed strong antimicrobial activity by destroying the cell membrane of bacteria but had low hemolytic activity. In addition, compared with monomeric peptide FR, rLG had improved ability to tolerate salt ions. CONCLUSION This research provides new ideas for the production of modified AMPs in microbial systems and their application in industrial production.
Collapse
Affiliation(s)
- Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Hong Yang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Yalan Zheng
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Xinke Wei
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
10
|
Liyanage KLDTD, Wiethoelter A, Hufschmid J, Jabbar A. Descriptive Comparison of ELISAs for the Detection of Toxoplasma gondii Antibodies in Animals: A Systematic Review. Pathogens 2021; 10:605. [PMID: 34063342 PMCID: PMC8157005 DOI: 10.3390/pathogens10050605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii is the zoonotic parasite responsible for toxoplasmosis in warm-blooded vertebrates. This systematic review compares and evaluates the available knowledge on enzyme-linked immunosorbent assays (ELISAs), their components, and performance in detecting T. gondii antibodies in animals. Four databases were searched for published scientific studies on T. gondii and ELISA, and 57 articles were included. Overall, indirect (95%) and in-house (67%) ELISAs were the most used types of test among the studies examined, but the 'ID Screen® Toxoplasmosis Indirect Multi-species' was common among commercially available tests. Varying diagnostic performance (sensitivity and specificity) and Kappa agreements were observed depending on the type of sample (serum, meat juice, milk), antigen (native, recombinant, chimeric) and antibody-binding reagents used. Combinations of recombinant and chimeric antigens resulted in better performance than native or single recombinant antigens. Protein A/G appeared to be useful in detecting IgG antibodies in a wide range of animal species due to its non-species-specific binding. One study reported cross-reactivity, with Hammondia hammondi and Eimeria spp. This is the first systematic review to descriptively compare ELISAs for the detection of T. gondii antibodies across different animal species.
Collapse
Affiliation(s)
- K. L. D. Tharaka D. Liyanage
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia; (A.W.); (J.H.); (A.J.)
| | | | | | | |
Collapse
|
11
|
Designing an HCV diagnostic kit for common genotypes of the virus in Iran based on conserved regions of core, NS3-protease, NS4A/B, and NS5A/B antigens: an in silico approach. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00566-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Designing and Modeling of Multi-epitope Proteins for Diagnosis of Toxocara canis Infection. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09940-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Ribeiro PAF, Souza MQ, Dias DS, Álvares ACM, Nogueira LM, Machado JM, Dos Santos JC, Godoi RR, Nobrega YKM, Campos-da-Paz M, de Freitas SM, Felipe MSS, Torres FAG, Galdino AS. A Custom-Designed Recombinant Multiepitope Protein for Human Cytomegalovirus Diagnosis. Recent Pat Biotechnol 2019; 13:316-328. [PMID: 31333134 DOI: 10.2174/1872208313666190716093911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Human Cytomegalovirus (HCMV) has infected more than 90% of the world population and its prevalence can be related to the individuals geographical and socialeconomic status. Serological tests based on ELISA are pivotal for HCMV diagnosis. Due to the lack of standardization in the production/purification of antigens from viral preparations, ELISA tests are based on several recombinant proteins or peptides. As an alternative, multiepitope proteins may be employed. OBJECTIVE In this work, we developed a recombinant multiepitope protein (rMEHCMV) for HCMV diagnosis based on conserved and immunodominant epitopes derived from tegument (pp150, pp65 and pp28), glycoprotein gB (pp38) and DNA polymerase subunit (pp52) of HCMV. METHODS The rMEHCMV gene was synthesized de novo and overexpressed in Escherichia coli cells. The recombinant protein was purified to homogeneity using a Ni-NTA column. Biophysical analysis of recombinant protein was performed by circular dichroism. A preliminary biological activity test was performed using 12 positive human sera samples by using an in-house IgG ELISA. The following patents database were consulted: Espacenet, Google Patents and the National Institute of Intellectual Property (INPI, Brazil). RESULTS The recombinant multiepitope protein was successfully expressed in E. coli. The structural data obtained by circular dichroism spectroscopy showed that rMEHCMV is structurally disordered. An in-house IgG ELISA test with rMEHCMV was successfully used to recognized IgG from human serum samples. CONCLUSION Together, our results show that rMEHCMV should be considered as a potential antigenic target for HCMV diagnosis.
Collapse
Affiliation(s)
- Patrícia A F Ribeiro
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Marilen Q Souza
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Daniel S Dias
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Alice C M Álvares
- Laboratorio de Biofisica, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Laís M Nogueira
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Juliana M Machado
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - José C Dos Santos
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Renato R Godoi
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Yanna K M Nobrega
- Laboratorio de Doencas Imunogeneticas e Cronico-degenerativas, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Mariana Campos-da-Paz
- Laboratorio de Nanobiotecnologia, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Sonia M de Freitas
- Laboratorio de Biofisica, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Maria S S Felipe
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Fernando A G Torres
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Alexsandro S Galdino
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| |
Collapse
|
14
|
Antigenicity Identification of a Novel Recombinant Multi-Epitope Antigen Based on FlaA and UreB Antigens of Helicobacter pylori. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.66502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Thomasini RL, Souza HGA, Bruna-Romero O, Totola AH, Gonçales NSL, Lima CX, Teixeira MM. Evaluation of a recombinant multiepitope antigen for diagnosis of hepatitis C virus: A lower cost alternative for antigen production. J Clin Lab Anal 2018; 32:e22410. [DOI: 10.1002/jcla.22410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ronaldo Luis Thomasini
- Faculdade de Medicina de Diamantina (FAMED); NEPii - Núcleo de Estudos de Patologias Infecciosas e Inflamatórias; Universidade Federal dos Vales do Jequinhonha e Mucuri; Diamantina Minas Gerais Brazil
| | | | - Oscar Bruna-Romero
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Florianópolis Santa Catarina Brazil
| | | | | | - Cristiano Xavier Lima
- Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Mauro Martins Teixeira
- Departamento de Fisiologia e Biofísica; Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
16
|
Khalili S, Rasaee MJ, Mousavi SL, Amani J, Jahangiri A, Borna H. In silico Prediction and in vitro Verification of a Novel Multi-Epitope Antigen for HBV Detection. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2018. [DOI: 10.3103/s0891416817040097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies. BMC Infect Dis 2017; 17:807. [PMID: 29284420 PMCID: PMC5747131 DOI: 10.1186/s12879-017-2920-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 12/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated. METHODS An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis. RESULTS The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody. CONCLUSIONS This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, B.O.Box, 382, Omdurman, Sudan
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Nasiri K, Nassiri M, Tahmoorespur M, Haghparast A, Zibaee S. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus. Adv Pharm Bull 2016; 6:91-8. [PMID: 27123423 PMCID: PMC4845540 DOI: 10.15171/apb.2016.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. METHODS In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. RESULTS The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni-NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. CONCLUSION The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure.
Collapse
Affiliation(s)
- Khadijeh Nasiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Mohammadreza Nassiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. ; Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Alireza Haghparast
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran
| | - Saeed Zibaee
- Razi Vaccine and Serum Research Institute, Mashhad, Iran
| |
Collapse
|
19
|
A Novel Structurally Stable Multiepitope Protein for Detection of HCV. HEPATITIS RESEARCH AND TREATMENT 2016; 2016:6592143. [PMID: 26942007 PMCID: PMC4749800 DOI: 10.1155/2016/6592143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/29/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) has emerged as the major pathogen of liver diseases in recent years leading to worldwide blood-transmitted chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Accurate diagnosis for differentiation of hepatitis C from other viruses is thus of pivotal importance for proper treatment. In this work we developed a recombinant multiepitope protein (rMEHCV) for hepatitis C diagnostic purposes based on conserved and immunodominant epitopes from core, NS3, NS4A, NS4B, and NS5 regions of the virus polyprotein of genotypes 1a, 1b, and 3a, the most prevalent genotypes in South America (especially in Brazil). A synthetic gene was designed to encode eight epitopes in tandem separated by a flexible linker and bearing a his-tag at the C-terminal end. The recombinant protein was produced in Escherichia coli and purified in a single affinity chromatographic step with >95% purity. Purified rMEHCV was used to perform an ELISA which showed that the recombinant protein was recognized by IgG and IgM from human serum samples. The structural data obtained by circular dichroism (CD) spectroscopy showed that rMEHCV is a highly thermal stable protein at neutral and alkaline conditions. Together, these results show that rMEHCV should be considered an alternative antigen for hepatitis C diagnosis.
Collapse
|
20
|
Salminen T, Juntunen E, Khanna N, Pettersson K, Talha SM. Anti-HCV immunoassays based on a multiepitope antigen and fluorescent lanthanide chelate reporters. J Virol Methods 2015; 228:67-73. [PMID: 26615808 DOI: 10.1016/j.jviromet.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023]
Abstract
There is a need for simple to produce immunoassays for hepatitis C virus (HCV) antibody capable of detecting all genotypes worldwide. Current commonly used third generation immunoassays use three to six separate recombinant proteins or synthetic peptides. We have developed and expressed in Escherichia coli a single recombinant antigen incorporating epitopes from different HCV proteins. This multiepitope protein (MEP) was used to develop two types of HCV antibody immunoassays: a traditional antibody immunoassay using a labeled secondary antibody (indirect assay) and a double-antigen assay with the same MEP used as capture binder and labeled binder. The secondary antibody assay was evaluated with 171 serum/plasma samples and double-antigen assay with 148 samples. These samples included an in-house patient sample panel, two panels of samples with different HCV genotypes and a seroconversion panel. The secondary antibody immunoassay showed 95.6% sensitivity and 100% specificity while the double-antigen assay showed 91.4% sensitivity and 100% specificity. Both assays detected samples from all six HCV genotypes. The results showed that combining a low-cost recombinant MEP binder antigen with a high sensitivity fluorescent lanthanide reporter can provide a sensitive and specific immunoassay for HCV serology. The results also showed that the sensitivity of HCV double-antigen assays may suffer from the low avidity immune response of acute infections.
Collapse
Affiliation(s)
- Teppo Salminen
- Department of Biotechnology, University of Turku, Turku, Finland.
| | - Etvi Juntunen
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Navin Khanna
- Recombinant Gene Products Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India; Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kim Pettersson
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Sheikh M Talha
- Department of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Taherkhani R, Farshadpour F, Makvandi M. Design and production of a multiepitope construct derived from hepatitis E virus capsid protein. J Med Virol 2015; 87:1225-1234. [PMID: 25784455 PMCID: PMC7159329 DOI: 10.1002/jmv.24171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/15/2022]
Abstract
The aim of this study was to design a high density multiepitope protein, which can be a promising multiepitope vaccine candidate against Hepatitis E virus (HEV). Initially, conserved and antigenic helper T-lymphocyte (HTL) epitopes in the HEV capsid protein were predicted by in silico analysis. Subsequently, a multiepitope comprising four HTL epitopes with high-affinity binding to the HLA molecules was designed, and repeated four times as high density multiepitope construct. This construct was synthesized and cloned into pET-30a (+) vector. Then, it was transformed and expressed in Escherichia coli BL21 cells. The high density multiepitope protein was purified by Ni-NTA agarose and concentrated using Amicon filters. Finally, the immunological properties of this high density multiepitope protein were evaluated in vitro. The results showed that the high density multiepitope construct was successfully expressed and purified. SDS-PAGE and Western blot analyses showed the presence of a high density multiepitope protein band of approximately 33 kDa. Approximately 1 mg of the purified protein was obtained from each liter of the culture media. Moreover, the purified multiepitope protein was capable of induction of proliferation responses, IFN-γ ELISPOT responses and IFN-γ and IL-12 cytokines production in a significant level in peripheral blood mononuclear cells (PBMCs) isolated from HEV-recovered individuals compared to the control group. In conclusion, the newly produced multiepitope protein can induce significant T helper type 1 responses in vitro, and can be considered as a novel strategy for the development of HEV vaccines in the future.
Collapse
Affiliation(s)
- Reza Taherkhani
- Department of Microbiology and ParasitologySchool of MedicineBushehr University of Medical SciencesBushehrIran
- Persian Gulf Biomedical Research CenterBushehr University of Medical SciencesBushehrIran
| | - Fatemeh Farshadpour
- Department of Microbiology and ParasitologySchool of MedicineBushehr University of Medical SciencesBushehrIran
- Persian Gulf Tropical Medicine Research CenterBushehr University of Medical SciencesBushehrIran
| | - Manoochehr Makvandi
- Health Research InstituteInfectious and Tropical Disease Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
22
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. Design and evaluation of a recombinant multi-epitope antigen for serodiagnosis of Toxoplasma gondii infection in humans. Parasit Vectors 2015; 8:315. [PMID: 26062975 PMCID: PMC4465724 DOI: 10.1186/s13071-015-0932-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens. Findings To accomplish our goals, a single synthetic gene of approximately 456 bp, which encodes potential epitopes of T. gondii antigens, was successfully constructed using gene assembly PCR. The constructed gene was cloned into a pET32a expression vector and transformed into BL21 E. coli. The entire protein was successfully expressed and purified. Subsequently, the preliminary diagnostic performance of expressed protein was evaluated by developing IgG enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using human sera. The results showed 100 % sensitivity and specificity. Conclusion A purified protein expressing multi-immunodominant epitopes of T. gondii was generated. Further studies are required to evaluate the immunogenicity in animal models and to verify the immuno-reactivity of USM.TOXO1 as a diagnostic antigen.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
23
|
Faria AR, de Castro Veloso L, Coura-Vital W, Reis AB, Damasceno LM, Gazzinelli RT, Andrade HM. Novel recombinant multiepitope proteins for the diagnosis of asymptomatic leishmania infantum-infected dogs. PLoS Negl Trop Dis 2015; 9:e3429. [PMID: 25569685 PMCID: PMC4287523 DOI: 10.1371/journal.pntd.0003429] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/21/2014] [Indexed: 11/29/2022] Open
Abstract
Background Visceral leishmaniasis is the most severe form of leishmaniasis. Worldwide, approximately 20% of zoonotic human visceral leishmaniasis is caused by Leishmania infantum, also known as Leishmania chagasi in Latin America. Current diagnostic methods are not accurate enough to identify Leishmania-infected animals and may compromise the effectiveness of disease control. Therefore, we aimed to produce and test two recombinant multiepitope proteins as a means to improve and increase accuracy in the diagnosis of canine visceral leishmaniasis (CVL). Methodology/Principal Findings Ten antigenic peptides were identified by CVL ELISA in previous work. In the current proposal, the coding sequences of these ten peptides were assembled into a synthetic gene. Furthermore, other twenty peptides were selected from work by our group where good B and T cell epitopes were mapped. The coding sequences of these peptides were also assembled into a synthetic gene. Both genes have been cloned and expressed in Escherichia coli, producing two multiepitope recombinant proteins, PQ10 and PQ20. These antigens have been used in CVL ELISA and were able to identify asymptomatic dogs (80%) more effectively than EIE-LVC kit, produced by Bio-Manguinhos (0%) and DPP kit (10%). Moreover, our recombinant proteins presented an early detection (before PCR) of infected dogs, with positivities ranging from 23% to 65%, depending on the phase of infection in which sera were acquired. Conclusions/Significance Our study shows that ELISA using the multiepitope proteins PQ10 and PQ20 has great potential in early CVL diagnosis. The use of these proteins in other methodologies, such as immunochromatographic tests, could be beneficial mainly for the detection of asymptomatic dogs. Visceral leishmaniasis is the most severe form among leishmaniasis, being a neglected disease caused by a protozoan parasite. Its transmission through phlebotominae bites, between dogs and humans, classifies it as a zoonotic disease. It is caused by the specie Leishmania infantum ( = L. chagasi) and represents 20% of the world's human visceral leishmaniasis. Visceral leishmaniasis is a serious public health issue, fatal if untreated, and its incidence is increasing in urban areas of the tropics. In Brazil, one of the control measures is the identification and elimination of infected dogs, which act as reservoirs for Leishmania parasites. Diagnostic methods used to identify infection in these animals are still not accurate enough, which may compromise the effectiveness of this control measure. Thus, to contribute to the diagnosis of canine visceral leishmaniasis, we aimed to develop and test two new antigens that could be applied in early detection of infected dogs.
Collapse
Affiliation(s)
- Angélica Rosa Faria
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brasil
| | - Luciano de Castro Veloso
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brasil
| | - Wendel Coura-Vital
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro Preto, Minas Gerais, Brasil
| | - Alexandre Barbosa Reis
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro Preto, Minas Gerais, Brasil
| | - Leonardo Miranda Damasceno
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo T. Gazzinelli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, Minas Gerais, Brasil
- Centro de Pesquisas René Rachou – Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- University of Massachusetts Medical School, Division of Infectious Diseases and Immunology, Worcester, Massachusetts, United States of America
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brasil
- * E-mail:
| |
Collapse
|
24
|
Detection of antibodies against customized epitope: use of a coating antigen employing VEGF as fusion partner. Appl Microbiol Biotechnol 2014; 98:6659-66. [PMID: 24595426 DOI: 10.1007/s00253-014-5618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Diagnosis of many infectious, autoimmune diseases and cancers depends on the detection of specific antibodies against peptide epitope by enzyme-linked immunosorbent assay (ELISA). However, small peptides are difficult to be coated on the plate surfaces. In this study, we selected GnRH as a model hapten to evaluate whether VEGF121 would be suitable as an irrelevant hapten-carrier to develop a universal platform for specific antibodies detection. Firstly, GnRH was fused to the C terminus of VEGF121 and the resultant fusion protein VEGF-GnRH expressed effectively as inclusion bodies in Escherichia coli. Thereafter, VEGF-GnRH was easily purified to near homogeneity with a yield of about 235 mg from 2.1 L induced culture. At last, VEGF-GnRH was used to perform ELISA and western blot, and our results suggested that VEGF-GnRH was capable of detecting anti-GnRH antibodies in sera both qualitatively and quantitatively. Indeed, previous studies of our laboratory had demonstrated that other fusion proteins such as VEGF-Aβ10, VEGF-GRP, VEGF-CETPC, and VEGF-βhCGCTP37 were able to detect their corresponding antibodies specifically. Therefore, VEGF121 may be a suitable irrelevant fusion partner of important diagnostic peptide markers. Our works would shed some light on the development of a universal platform for detection of specific antibodies.
Collapse
|
25
|
Aguilar-Noriega D, Alvarez-Lajonchere L, Brown E, Santana FL, Dubuisson J, Wychowski C, Guerra I, Martínez-Donato G, Pérez A, Amador-Cañizares Y, Dueñas-Carrera S. A chimeric protein encompassing hepatitis C virus epitopes is able to elicit both humoral and cell-mediated immune responses in mice. Biotechnol Appl Biochem 2014; 61:627-36. [PMID: 24575938 DOI: 10.1002/bab.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a worldwide health problem. Vaccines against this pathogen are not available and advances in this field are limited because of the high genetic variability of the virus, inaccessibility of animal models, and incomplete definition of immunological correlates of protection. In the present work, a chimeric protein, Eq1, encompassing HCV amino acid regions from structural antigens, was generated. Eq1 was expressed in GC-366 bacterial cells. After cell disruption, Eq1 was purified from the insoluble fraction by sequential steps of differential solubilization and metal chelating affinity chromatography. Eq1 was specifically recognized by anti-HCV positive human sera. Moreover, immunization of BALB/c mice with different doses of Eq1 formulated either in Alum or Freund's incomplete adjuvant elicited both humoral- and cellular-specific immune responses. Doses of 20 µg of Eq1 induced the strongest cell-mediated immune responses and only the formulation of this dose in Alum elicited a neutralizing antibody response against heterologous cell culture HCV. All these data together indicate that Eq1 is immunogenic in mice and might be an interesting component of vaccine candidates against HCV infection.
Collapse
|
26
|
A recombinant multiepitope protein for hepatitis B diagnosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:148317. [PMID: 24294596 PMCID: PMC3835477 DOI: 10.1155/2013/148317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 12/18/2022]
Abstract
Hepatitis B is a liver inflammation caused by hepatitis B virus (HBV) and can be diagnosed in clinical stage by hepatitis B core antibody from IgM class (anti-HBcIgM). Hepatitis B core antibody from IgG class (Anti-HBcIgG) appears quickly after IgM, reaching high titers in chronic hepatitis, and remains even after cure. Since hepatitis B core antibody (anti-HBc) is the first antibody identified and sometimes the only marker detected during the course of infection, it can be used both to indicate HBV acute infection (anti-HBc-IgM) and to identify individuals who have come into contact with the virus (anti-HBc-IgG). In this work we propose a recombinant hepatitis B core multiepitope antigen (rMEHB) to be used for diagnosis of hepatitis B. For this purpose, a synthetic gene coding for rMEHB was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal. Time course induction in E. coli showed an induced protein with an apparent molecular mass of ~21 kDa. Protein purification was performed by a single step with affinity chromatography Ni-NTA. Circular dichroism spectroscopy indicated rMEHB as a thermal stable protein at pH 7.0 and 8.0. In these conditions rMEHB was successfully used to perform an enzyme linked immuno sorbent assay (ELISA) with positive and negative sera.
Collapse
|
27
|
Gurramkonda C, Talha SM, Gudi SK, Gogineni VR, Surya Sambasiva Rao KR. Fed-batch cultivation of Escherichia coliexpressed designer hepatitis C virus diagnostic intermediate and its evaluation. Biotechnol Appl Biochem 2012; 59:437-444. [DOI: 10.1002/bab.1044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
| | - Sheikh M. Talha
- Recombinant Gene Products Group; International Centre for Genetic Engineering and Biotechnology; New Delhi; India
| | - Satheesh Kumar Gudi
- Recombinant Gene Products Group; International Centre for Genetic Engineering and Biotechnology; New Delhi; India
| | - Venkateswara Rao Gogineni
- Department of Cancer Biology and Pharmacology; University of Illinois College of Medicine; Peoria; IL; USA
| | | |
Collapse
|
28
|
Mathur A, Chand S. Cloning and Expression ofα-Amylase Gene inEscherichia coli: Effect on Specific Oxygen Uptake Rate and Host Cell Morphology during Batch Fermentation. Chem Ind 2011. [DOI: 10.1080/00194506.2011.696364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Talha SM, Salminen T, Swaminathan S, Soukka T, Pettersson K, Khanna N. A highly sensitive and specific time resolved fluorometric bridge assay for antibodies to HIV-1 and -2. J Virol Methods 2011; 173:24-30. [PMID: 21232554 DOI: 10.1016/j.jviromet.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/20/2010] [Accepted: 01/04/2011] [Indexed: 11/28/2022]
Abstract
This study addresses the continuing need to develop human immunodeficiency virus-1 (HIV-1) and HIV-2 immunoassays with increased sensitivity. Two chimeric antigens, r-HIV-1env, incorporating immunoreactive regions of HIV-1 glycoprotein (gp) 120 and gp41, and r-HIV-2env, incorporating HIV-2 gp125 and gp36, and their corresponding in vivo biotinylated versions, r-Bio-HIV-1env and r-Bio-HIV-2env, were expressed in Escherichia coli and purified by single step affinity chromatography. These antigens were used to set up a bridge assay for the detection of anti-HIV antibodies. Anti-HIV-1 and HIV-2 antibodies in sera were captured using a mixture of the biotinylated antigens, immobilized on streptavidin-coated microtiter wells, and revealed using a mixture of the non-biotinylated antigens, labeled with either Eu(3+) chelate or with nanoparticles doped with the Eu(3+) chelate, followed by fluorescence measurement using time resolved fluorometry (TRF). The performance of this TRF immunoassay was compared to that of five commercial HIV ELISAs using well-characterized sera panels. The results show that the TRF immunoassay using either form of the label was in complete agreement with the commercial assays. The use of the Eu(3+) chelate label enhanced sensitivity significantly when used in the nanoparticle format as evidenced by the very high signal-to-cut-off ratios.
Collapse
Affiliation(s)
- Sheikh M Talha
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
30
|
Inexpensive designer antigen for anti-HIV antibody detection with high sensitivity and specificity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:335-41. [PMID: 20089793 DOI: 10.1128/cvi.00283-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel recombinant multiepitope protein (MEP) has been designed that consists of four linear, immunodominant, and phylogenetically conserved epitopes, taken from human immunodeficiency virus (HIV)-encoded antigens that are used in many third-generation immunoassay kits. This HIV-MEP has been evaluated for its diagnostic potential in the detection of anti-HIV antibodies in human sera. A synthetic MEP gene encoding these epitopes, joined by flexible peptide linkers in a single open reading frame, was designed and overexpressed in Escherichia coli. The recombinant HIV-MEP was purified using a single affinity step, yielding >20 mg pure protein/liter culture, and used as the coating antigen in an in-house immunoassay. Bound anti-HIV antibodies were detected by highly sensitive time-resolved fluorometry, using europium(III) chelate-labeled anti-human antibody. The sensitivity and specificity of the HIV-MEP were evaluated using Boston Biomedica worldwide HIV performance, HIV seroconversion, and viral coinfection panels and were found to be comparable with those of commercially available anti-HIV enzyme immunoassay (EIA) kits. The careful choice of epitopes, high epitope density, and an E. coli-based expression system, coupled with a simple purification protocol and the use of europium(III) chelate-labeled tracer, provide the capability for the development of an inexpensive diagnostic test with high degrees of sensitivity and specificity.
Collapse
|
31
|
Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:899-905. [PMID: 19339486 DOI: 10.1128/cvi.00005-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp.
Collapse
|