1
|
Ratre V, Biswas M. Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11. Arch Microbiol 2025; 207:33. [PMID: 39812785 DOI: 10.1007/s00203-024-04222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1). SSB proteins protect Single-stranded DNA intermediates generated during replication, recombination, and repair from nuclease degradation by binding to them. This highlights the importance of SSB proteins in the DNA metabolic processes. In this investigation, we have reported a systematic analysis of the structural and functional changes induced in rGp13 (the gene product of gp13) by several factors, such as metal ions and buffers of varying pH. The nature and length of the substrate required for the optimum function of rGp13 has also been investigated. Our results suggest that rGp13 is a robust protein which maintains its structure and function over a wide range of pH, with pH 4 being an exception. The monovalent cations used in this study seemed to have a stabilizing effect on the protein. Interestingly, among the divalent cations studied, only Zn2+ ions were found to completely destabilise rGp13, with a complete loss of the parallel β-sheet and α-helical content of the protein. This, in turn, totally abolished the DNA binding activity of rGp13. Another interesting observation from this study was that rGP13 could also bind to double-stranded DNA molecules. In summary, SSBs bind to dsDNA, ensuring genome integrity, protecting ssDNA, and impacting transcriptional processes. These crucial functions highlight their significance in maintaining cellular stability.
Collapse
Affiliation(s)
- V Ratre
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - M Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
2
|
Immunosensor for realtime monitoring of the expression of recombinant proteins during bioprocess. Anal Biochem 2023; 665:115069. [PMID: 36716945 DOI: 10.1016/j.ab.2023.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Recombinant protein expression and purification are crucial in modern life sciences research. A fluorescent immunosensor termed Quenchbody (Q-body) was developed for real-time monitoring of FLAG-fused protein expression. Detection results showed that the limit of detection of the 3 × FLAG peptide detected by the TAMRA-labeled anti-FLAG Q-body was as low as 3.1 nM, with a half-maximal effective concentration of 21.4 nM. Furthermore, the anti-FLAG Q-body was used for detecting different proteins fused with a FLAG-tag at the N- or C-terminal. Subsequently, the constructed Q-body was used to monitor the real-time fermentation process of single-strand DNA-binding protein in Escherichia coli. Unlike previously reported Q-bodies that widely used Fab or scFv, the present study used a full-length anti-FLAG IgG for the first time. Owing to its excellent detection speed and sensitivity, the FLAG Q-body immunosensor has the potential to quantify and monitor target recombinant proteins in multiple biological processes in real-time.
Collapse
|
3
|
Oliveira MT, Ciesielski GL. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins. Methods Mol Biol 2021; 2281:1-21. [PMID: 33847949 DOI: 10.1007/978-1-0716-1290-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | | |
Collapse
|
4
|
Staphylococcus aureus single-stranded DNA-binding protein SsbA can bind but cannot stimulate PriA helicase. PLoS One 2017; 12:e0182060. [PMID: 28750050 PMCID: PMC5531588 DOI: 10.1371/journal.pone.0182060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
Single-stranded DNA-binding protein (SSB) and PriA helicase play important roles in bacterial DNA replication restart process. The mechanism by which PriA helicase is bound and stimulated by SSB in Escherichia coli (Ec) has been established, but information on this process in Gram-positive bacteria are limited. We characterized the properties of SSB from Staphylococcus aureus (SaSsbA, a counterpart of EcSSB) and analyzed its interaction with SaPriA. The gel filtration chromatography analysis of purified SaSsbA showed a stable tetramer in solution. The crystal structure of SaSsbA determined at 1.82 Å resolution (PDB entry 5XGT) reveals that the classic oligonucleotide/oligosaccharide-binding folds are formed in the N-terminal DNA-binding domain, but the entire C-terminal domain is disordered. Unlike EcSSB, which can stimulate EcPriA via a physical interaction between EcPriA and the C-terminus of EcSSB (SSB-Ct), SaSsbA does not affect the activity of SaPriA. We also found that SaPriA can be bound by SaSsbA, but not by SaSsbA-Ct. Although no effect was found with SaSsbA, SaPriA can be significantly stimulated by the Gram-negative Klebsiella pneumoniae SSB (KpSSB). In addition, we found that the conserved SSB-Ct binding site of KpPriA (Trp82, Tyr86, Lys370, Arg697, and Gln701) is not present in SaPriA. Arg697 in KpPriA is known to play a critical role in altering the SSB35/SSB65 distribution, but this corresponding residue in SaPriA is Glu767 instead, which has an opposite charge to Arg. SaPriA E767R mutant was constructed and analyzed; however, it still cannot be stimulated by SaSsbA. Finally, we found that the conserved MDFDDDIPF motif in the Gram-negative bacterial SSB is DISDDDLPF in SaSsbA, i.e., F172 in EcSSB and F168 in KpSSB is S161 in SaSsbA, not F. When acting with SaSsbA S161F mutant, the activity of SaPriA was dramatically enhanced elevenfold. Overall, the conserved binding sites, both in EcPriA and EcSSB, are not present in SaPriA and SaSsbA, thereby no stimulation occurs. Our observations through structure-sequence comparison and mutational analyses indicate that the case of EcPriA-EcSSB is not applicable to SaPriA-SaSsbA because of inherent differences among the species.
Collapse
|
5
|
C-terminal domain swapping of SSB changes the size of the ssDNA binding site. BIOMED RESEARCH INTERNATIONAL 2014; 2014:573936. [PMID: 25162017 PMCID: PMC4137731 DOI: 10.1155/2014/573936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 01/29/2023]
Abstract
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, including DNA replication, repair, and recombination, and is therefore essential for cell survival. Bacterial SSB consists of an N-terminal ssDNA-binding/oligomerization domain and a flexible C-terminal protein-protein interaction domain. We characterized the ssDNA-binding properties of Klebsiella pneumoniae SSB (KpSSB), Salmonella enterica Serovar Typhimurium LT2 SSB (StSSB), Pseudomonas aeruginosa PAO1 SSB (PaSSB), and two chimeric KpSSB proteins, namely, KpSSBnStSSBc and KpSSBnPaSSBc. The C-terminal domain of StSSB or PaSSB was exchanged with that of KpSSB through protein chimeragenesis. By using the electrophoretic mobility shift assay, we characterized the stoichiometry of KpSSB, StSSB, PaSSB, KpSSBnStSSBc, and KpSSBnPaSSBc, complexed with a series of ssDNA homopolymers. The binding site sizes were determined to be 26 ± 2, 21 ± 2, 29 ± 2, 21 ± 2, and 29 ± 2 nucleotides (nt), respectively. Comparison of the binding site sizes of KpSSB, KpSSBnStSSBc, and KpSSBnPaSSBc showed that the C-terminal domain swapping of SSB changes the size of the binding site. Our observations suggest that not only the conserved N-terminal domain but also the C-terminal domain of SSB is an important determinant for ssDNA binding.
Collapse
|
6
|
Sun J, Yan Y, Sun S, Shu X, Zhu C, Zhu J. DNA binding and reactivity assays based on in-frame protein expression. Chem Sci 2013. [DOI: 10.1039/c2sc21464d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
8
|
Falero A, Caballero A, Trigueros S, Pérez C, Campos J, Marrero K, Fando R. Characterization of the single-stranded DNA binding protein pV(VGJΦ) of VGJΦ phage from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:1107-12. [PMID: 21586349 DOI: 10.1016/j.bbapap.2011.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/22/2011] [Accepted: 04/21/2011] [Indexed: 01/01/2023]
Abstract
pV(VGJΦ), a single-stranded DNA binding protein of the vibriophage VGJΦ was subject to biochemical analysis. Here, we show that this protein has a general affinity for single-stranded DNA (ssDNA) as documented by Electrophoretic Mobility Shift Assay (EMSA). The apparent molecular weight of the monomer is about 12.7kDa as measured by HPLC-SEC. Moreover, isoelectrofocusing showed an isoelectric point for pV(VGJΦ) of 6.82 pH units. Size exclusion chromatography in 150mM NaCl, 50mM sodium phosphate buffer, pH 7.0 revealed a major protein species of 27.0kDa, suggesting homodimeric protein architecture. Furthermore, pV(VGJΦ) binds ssDNA at extreme temperatures and the complex was stable after extended incubation times. Upon frozen storage at -20°C for a year the protein retained its integrity, biological activity and oligomericity. On the other hand, bioinformatics analysis predicted that pV(VGJΦ) protein has a disordered C-terminal, which might be involved in its functional activity. All the aforementioned features make pV(VGJΦ) interesting for biotechnological applications.
Collapse
Affiliation(s)
- Alina Falero
- Department of Molecular Biology, National Center for Scientific Research, Havana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
9
|
Olszewski M, Grot A, Wojciechowski M, Nowak M, Mickiewicz M, Kur J. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana. BMC Microbiol 2010; 10:260. [PMID: 20950419 PMCID: PMC2964679 DOI: 10.1186/1471-2180-10-260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. Conclusion The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).
Collapse
Affiliation(s)
- Marcin Olszewski
- Department of Microbiology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
10
|
Blasius M, Sommer S, Hübscher U. Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 2008; 43:221-38. [PMID: 18568848 DOI: 10.1080/10409230802122274] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Deinococcus radiodurans, one of the most radioresistant organisms known to date, is able to repair efficiently hundreds of DNA double- and single-strand breaks as well as other types of DNA damages promoted by ionizing or ultraviolet radiation. We review recent discoveries concerning several aspects of radioresistance and survival under high genotoxic stress. We discuss different hypotheses and possibilities that have been suggested to contribute to radioresistance and propose that D. radiodurans combines a variety of physiological tools that are tightly coordinated. A complex network of regulatory proteins may be discovered in the near future that might allow further understanding of radioresistance.
Collapse
Affiliation(s)
- Melanie Blasius
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Olszewski M, Mickiewicz M, Kur J. Two highly thermostable paralogous single-stranded DNA-binding proteins from Thermoanaerobacter tengcongensis. Arch Microbiol 2008; 190:79-87. [DOI: 10.1007/s00203-008-0366-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/10/2008] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
|