1
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
2
|
Byun H, Park J, Fabia BU, Bingwa J, Nguyen MH, Lee H, Ahn JH. Generalized Approach towards Secretion-Based Protein Production via Neutralization of Secretion-Preventing Cationic Substrate Residues. Int J Mol Sci 2022; 23:ijms23126700. [PMID: 35743142 PMCID: PMC9223453 DOI: 10.3390/ijms23126700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many heterologous proteins can be secreted by bacterial ATP-binding cassette (ABC) transporters, provided that they are fused with the C-terminal signal sequence, but some proteins are not secretable even though they carry the right signal sequence. The invention of a method to secrete these non-secretable proteins would be valuable both for understanding the secretory physiology of ABC transporters and for industrial applications. Herein, we postulate that cationic “supercharged” regions within the target substrate protein block the secretion by ABC transporters. We also suggest that the secretion of such substrate proteins can be rescued by neutralizing those cationic supercharged regions via structure-preserving point mutageneses. Surface-protruding, non-structural cationic amino acids within the cationic supercharged regions were replaced by anionic or neutral hydrophilic amino acids, reducing the cationic charge density. The examples of rescued secretions we provide include the spike protein of SARS-CoV-2, glutathione-S-transferase, streptavidin, lipase, tyrosinase, cutinase, growth factors, etc. In summary, our study provides a method to predict the secretability and a tool to rescue the secretion by correcting the secretion-blocking regions, making a significant step in understanding the physiological properties of ABC transporter-dependent protein secretion and laying the foundation for the development of a secretion-based protein-producing platform.
Collapse
Affiliation(s)
- Hyunjong Byun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Jiyeon Park
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea; (J.P.); (B.U.F.); (J.B.); (M.H.N.)
| | - Benedict U. Fabia
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea; (J.P.); (B.U.F.); (J.B.); (M.H.N.)
| | - Joshua Bingwa
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea; (J.P.); (B.U.F.); (J.B.); (M.H.N.)
| | - Mihn Hieu Nguyen
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea; (J.P.); (B.U.F.); (J.B.); (M.H.N.)
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.L.); (J.H.A.); Tel.: +82-10-8974-5141 (H.L.); +82-10-8826-6109 (J.H.A.)
| | - Jung Hoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea; (J.P.); (B.U.F.); (J.B.); (M.H.N.)
- Correspondence: (H.L.); (J.H.A.); Tel.: +82-10-8974-5141 (H.L.); +82-10-8826-6109 (J.H.A.)
| |
Collapse
|
3
|
Expression of
cry
genes in
Bacillus thuringiensis
biotechnology. Appl Microbiol Biotechnol 2019; 103:1617-1626. [DOI: 10.1007/s00253-018-9552-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
|
4
|
Narva KE, Wang NX, Herman R. Safety considerations derived from Cry34Ab1/Cry35Ab1 structure and function. J Invertebr Pathol 2016; 142:27-33. [PMID: 27480405 DOI: 10.1016/j.jip.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 11/16/2022]
Abstract
Insecticidal proteins developed for in-plant protection against crop pests undergo extensive safety testing during the product development process. Safety considerations for insecticidal proteins expressed in crops follow recommended, science-based guidelines and specific studies are conducted on a case by case basis. Corn events expressing Bacillus thuringiensis (Bt) Cry34Ab1 and Cry35Ab1 were developed to protect maize from Diabrotica virgifera virgifera (western corn rootworm) feeding damage. The protein crystal structures of Cry34Ab1 and Cry35Ab1 are different from the more common three-domain Cry or Vip3 proteins expressed in insect resistant maize varieties. Cry34Ab1 is a single domain protein that folds into a beta sandwich structure that resembles membrane-active proteins, including several cytolysins, from a variety of natural sources. Cry35Ab1 has two domains, one domain with structural relatedness to sugar binding motifs and a second domain with an extended beta sheet structure that is clearly related to beta pore forming proteins, some of which are insecticidal, e.g. B. sphaericus BinA/BinB. In this review we discuss Cry34Ab1/Cry35Ab1 structure and function in the context of protein safety studies for insect resistant crops.
Collapse
Affiliation(s)
- Kenneth E Narva
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA.
| | - Nick X Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | - Rod Herman
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| |
Collapse
|
5
|
Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 2012; 30:1102-7. [DOI: 10.1016/j.biotechadv.2011.09.013] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/07/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
|
6
|
Gill TA, Sandoya G, Williams P, Luthe DS. Belowground resistance to western corn rootworm in lepidopteran-resistant maize genotypes. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:299-307. [PMID: 21404871 DOI: 10.1603/ec10117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several maize, Zea mays L., inbred lines developed from an Antiguan maize population have been shown to exhibit resistance to numerous aboveground lepidopteran pests. This study shows that these genotypes are able to significantly reduce the survival of two root feeding pests, western corn rootworm, Diabrotica virgifera virgifera LeConte, and southern corn rootworm, Diabrotica undecimpunctata howardi Barber. The results also demonstrated that feeding by the aboveground herbivore fall armyworm, Spodoptera frugiperda (J. E. Smith), before infestation by western corn rootworm reduced survivorship of western corn rootworm in the root tissues of some, but not all, genotypes. Likewise, the presence of western corn rootworm in the soil seemed to increase resistance to fall armyworm in the whorl in several genotypes. However, genotypes derived from the Antiguan germplasm with genetic resistance to lepidopterans were still more resistant to the fall armyworm and both rootworm species than the susceptible genotypes even after defense induction. These results suggest that there may be intraplant communication that alters plant responses to aboveground and belowground herbivores.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Crop and Soil Science, 116 ASI Bldg., The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
7
|
Acute and repeated dose (28 day) mouse oral toxicology studies with Cry34Ab1 and Cry35Ab1 Bt proteins used in coleopteran resistant DAS-59122-7 corn. Regul Toxicol Pharmacol 2009; 54:154-63. [DOI: 10.1016/j.yrtph.2009.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 11/17/2022]
|
8
|
Huang KX, Zahn J, Han L. SpnH from Saccharopolyspora spinosa encodes a rhamnosyl 4'-O-methyltransferase for biosynthesis of the insecticidal macrolide, spinosyn A. J Ind Microbiol Biotechnol 2008; 35:1669-76. [PMID: 18704529 DOI: 10.1007/s10295-008-0431-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Deoxysugar, 2', 3', 4'-tri-O-methylrhamnose is an essential structural component of spinosyn A and D, which are the active ingredients of the commercial insect control agent, Spinosad. The spnH gene, which was previously assigned as a rhamnose O-methyltransferase based on gene sequence homology, was cloned from the wild-type Saccharopolyspora spinosa and from a spinosyn K-producing mutant that was defective in the 4'-O-methylation of 2', 3'-tri-O-methylrhamnose. DNA sequencing confirmed a mutation resulting in an amino acid substitution of G-165 to A-165 in the rhamnosyl 4'-O-methyltransferase of the mutant strain, and the subsequent sequence analysis showed that the mutation occurred in a highly conserved region of the translated amino acid sequence. Both spnH and the gene defective in 4'-O-methylation activity (spnH165A) were expressed heterologously in E. coli and were then purified to homogeneity using a His-tag affinity column. Substrate bioconversion studies showed that the enzyme encoded by spnH, but not spnH165A, could utilize spinosyn K as a substrate. When the wild-type spnH gene was transformed into the spinosyn K-producing mutant, spinosyn A production was restored. These results establish that the enzyme encoded by the spnH gene in wild-type S. spinosa is a rhamnosyl 4'-O-methyltransferase that is responsible for the final rhamnosyl methylation step in the biosynthesis of spinosyn A.
Collapse
Affiliation(s)
- Ke-xue Huang
- Key Lab of Microbial Molecular Biology of Hunan Province, College of Life Science, Hunan Normal University, 410081, Changsha, China.
| | | | | |
Collapse
|