1
|
Aparecida Gonçalves AC, de Mello Damasco Nunes T, Parize E, Marques Gerhardt EC, Antônio de Souza G, Scholl J, Forchhammer K, Huergo LF. The activity of the ribonucleotide monophosphatase UmpH is controlled by interaction with the GlnK signaling protein in Escherichia coli. J Biol Chem 2024; 300:107931. [PMID: 39454949 PMCID: PMC11617674 DOI: 10.1016/j.jbc.2024.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
The PII signaling proteins are ubiquitous in prokaryotes serving as crucial metabolic hubs in different metabolic pathways because of their ability to sense and integrate signals of the cellular nitrogen, carbon, and energy levels. In this study, we used ligand fishing assays to identify the ribonucleotide monophosphatase UmpH enzyme as a novel target of the PII signaling protein GlnK in Escherichia coli. In vitro analyses showed that UmpH interacts specifically with the PII protein GlnK but not with its paralog protein GlnB. The UmpH-GlnK complex is modulated by the GlnK uridylylation status and by the levels of the GlnK allosteric effectors ATP, ADP, and 2-oxoglutarate. Upon engaging interaction with GlnK, UmpH becomes less active toward its substrate uridine 5'-monophosphate. We suggest a model where GlnK will physically interact to reduce the UmpH activity during the transition from N-starvation to N-sufficient conditions. Such a mechanism may help the cells to reprogram the fate of uridine 5'-monophosphate from catabolism to anabolism avoiding futile cycling of key nutrients.
Collapse
Affiliation(s)
| | | | - Erick Parize
- Programa de Pós-Graduação em Ciências - Bioquímica, UFPR Curitiba, Paraná, Brazil
| | | | - Gustavo Antônio de Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Jörg Scholl
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Luciano Fernandes Huergo
- Setor Litoral, UFPR Matinhos, Paraná, Brazil; Programa de Pós-Graduação em Ciências - Bioquímica, UFPR Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Ensinck D, Gerhardt ECM, Rollan L, Huergo LF, Gramajo H, Diacovich L. The PII protein interacts with the Amt ammonium transport and modulates nitrate/nitrite assimilation in mycobacteria. Front Microbiol 2024; 15:1366111. [PMID: 38591044 PMCID: PMC11001197 DOI: 10.3389/fmicb.2024.1366111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.
Collapse
Affiliation(s)
- Delfina Ensinck
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Edileusa C. M. Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lara Rollan
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná, Universidade Federal do Paraná (UFPR), Matinhos, Paraná, Brazil
- Graduated Program in Sciences-Biochemistry, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Stefanello AA, Oliveira MASD, Souza EM, Pedrosa FO, Chubatsu LS, Huergo LF, Dixon R, Monteiro RA. Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140348. [PMID: 31866507 DOI: 10.1016/j.bbapap.2019.140348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Herbaspirillum seropedicae is a plant growth promoting bacterium that is able to fix nitrogen and to colonize the surface and internal tissues of important crops. Nitrogen fixation in H. seropedicae is regulated at the transcriptional level by the prokaryotic enhancer binding protein NifA. The activity of NifA is negatively affected by oxygen and positively stimulated by interaction with GlnK, a PII signaling protein that monitors intracellular levels of the key metabolite 2-oxoglutarate (2-OG) and functions as an indirect sensor of the intracellular nitrogen status. GlnK is also subjected to a cycle of reversible uridylylation in response to intracellular levels of glutamine. Previous studies have established the role of the N-terminal GAF domain of NifA in intramolecular repression of NifA activity and the role of GlnK in relieving this inhibition under nitrogen-limiting conditions. However, the mechanism of this control of NifA activity is not fully understood. Here, we constructed a series of GlnK variants to elucidate the role of uridylylation and effector binding during the process of NifA activation. Our data support a model whereby GlnK uridylylation is not necessary to activate NifA. On the other hand, binding of 2-OG and MgATP to GlnK are very important for NifA activation and constitute the most important signal of cellular nitrogen status to NifA.
Collapse
Affiliation(s)
- Adriano Alves Stefanello
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | | | - Emanuel Maltempi Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Fábio Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil
| | - Luciano Fernandes Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil; Setor Litoral, Universidade Federal do Paraná, Matinhos, PR, CEP 80060-000, Brazil
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NR4 7UH Norwich, UK
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CEP 81530-900 Curitiba, PR, Brazil.
| |
Collapse
|
4
|
The deuridylylation activity of Herbaspirillum seropedicae GlnD protein is regulated by the glutamine:2-oxoglutarate ratio. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1216-1223. [DOI: 10.1016/j.bbapap.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022]
|
5
|
Misugi CT, Savi LK, Iwankiw PK, Masson ML, de Oliveira MAS, Igarashi-Mafra L, Mafra MR. Effects of freezing and the cryoprotectant lactobionic acid in the structure of GlnK protein evaluated by circular dichroism (CD) and isothermal titration calorimetry (ITC). Journal of Food Science and Technology 2017; 54:236-243. [PMID: 28242921 DOI: 10.1007/s13197-016-2455-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
Freezing is a widely applied method in food preservation. The technique has negative effects on sensory and textural properties of some foods. In this study the effects of the freeze-thaw process and lactobionic acid (LBA) as a cryoprotectant on GlnK protein solution were evaluated by circular dichroism (CD) analysis and isothermal titration calorimetry (ITC). The freeze-thaw cycles caused changes in GlnK conformation and interactions with small ligands (adenosine triphosphate, ATP). CD assay demonstrated changes in the molar ellipticity values of the samples subjected to freezing, indicating conformational changes to the GlnK protein. Additionally, ITC analysis indicated that the freeze-thaw process caused changes in the interaction properties of GlnK with its ligand ATP. LBA cryoprotectant activity was also evaluated and with both of the techniques it was demonstrated that the compound prevented the damage caused by the freeze-thaw process, thereby maintaining the characteristics of the samples.
Collapse
Affiliation(s)
- Cíntia Tiemi Misugi
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| | - Lizandra Kamradt Savi
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| | - Patrícia Kanczewski Iwankiw
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| | - Maria Lucia Masson
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| | | | - Luciana Igarashi-Mafra
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| | - Marcos Rogério Mafra
- Department of Chemical Engineering, Polytechnic Center, Federal University of Paraná (UFPR), Jardim das Américas, 81531-990 Curitiba, PR Brazil
| |
Collapse
|
6
|
Laskoski K, Santos ARS, Bonatto AC, Pedrosa FO, Souza EM, Huergo LF. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae. Arch Microbiol 2016; 198:307-13. [PMID: 26802007 DOI: 10.1007/s00203-016-1190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.
Collapse
Affiliation(s)
- Kerly Laskoski
- Departamento de Bioquímica e Biologia Molecular, Curitiba, Brazil
| | | | - Ana C Bonatto
- Departamento de Genética, UFPR, Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Curitiba, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, Curitiba, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, Curitiba, Brazil. .,Setor Litoral, UFPR, Matinhos, Brazil.
| |
Collapse
|
7
|
Oliveira MAS, Gerhardt ECM, Huergo LF, Souza EM, Pedrosa FO, Chubatsu LS. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins. FEBS J 2015; 282:4797-809. [PMID: 26433003 DOI: 10.1111/febs.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 11/29/2022]
Abstract
Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state.
Collapse
Affiliation(s)
- Marco A S Oliveira
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Edileusa C M Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| | - Leda S Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Brazil
| |
Collapse
|
8
|
Rodrigues TE, Gerhardt ECM, Oliveira MA, Chubatsu LS, Pedrosa FO, Souza EM, Souza GA, Müller-Santos M, Huergo LF. Search for novel targets of the PII signal transduction protein in Bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner. Mol Microbiol 2014; 91:751-61. [PMID: 24329683 DOI: 10.1111/mmi.12493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
Abstract
The PII family comprises a group of widely distributed signal transduction proteins. The archetypal function of PII is to regulate nitrogen metabolism in bacteria. As PII can sense a range of metabolic signals, it has been suggested that the number of metabolic pathways regulated by PII may be much greater than described in the literature. In order to provide experimental evidence for this hypothesis a PII protein affinity column was used to identify PII targets in Azospirillum brasilense. One of the PII partners identified was the biotin carboxyl carrier protein (BCCP), a component of the acetyl-CoA carboxylase which catalyses the committed step in fatty acid biosynthesis. As BCCP had been previously identified as a PII target in Arabidopsis thaliana we hypothesized that the PII -BCCP interaction would be conserved throughout Bacteria. In vitro experiments using purified proteins confirmed that the PII -BCCP interaction is conserved in Escherichia coli. The BCCP-PII interaction required MgATP and was dissociated by increasing 2-oxoglutarate. The interaction was modestly affected by the post-translational uridylylation status of PII ; however, it was completely dependent on the post-translational biotinylation of BCCP.
Collapse
Affiliation(s)
- Thiago E Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jain S, Mandal RS, Anand S, Maiti S, Ramachandran S. Probing the amino acids critical for protein oligomerisation and protein-nucleotide interaction in Mycobacterium tuberculosis PII protein through integration of computational and experimental approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2736-49. [PMID: 24129075 DOI: 10.1016/j.bbapap.2013.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
We investigated the interacting amino acids critical for the stability and ATP binding of Mycobacterium tuberculosis PII protein through a series of site specific mutagenesis experiments. We assessed the effect of mutants using glutaraldehyde crosslinking and size exclusion chromatography and isothermal titration calorimetry. Mutations in the amino acid pair R60-E62 affecting central electrostatic interaction resulted in insoluble proteins. Multiple sequence alignment of PII orthologs displayed a conserved pattern of charged residues at these positions. Mutation of amino acid D97 to a neutral residue was tolerated whereas positive charge was not acceptable. Mutation of R107 alone had no effect on trimer formation. However, the combination of neutral residues both at positions 97 and 107 was not acceptable even with the pair at 60-62 intact. Reversal of charge polarity could partially restore the interaction. The residues including K90, R101 and R103 with potential to form H-bonds to ATP are conserved throughout across numerous orthologs of PII but when mutated to Alanine, they did not show significant differences in the total free energy change of the interaction as examined through isothermal titration calorimetry. The ATP binding pattern showed anti-cooperativity using three-site binding model. We observed compensatory effect in enthalpy and entropy changes and these may represent structural adjustments to accommodate ATP in the cavity even in absence of some interactions to perform the requisite function. In this respect these small differences between the PII orthologs may have evolved to suite species specific physiological niches.
Collapse
Affiliation(s)
- Sriyans Jain
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
10
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
11
|
Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH4+-regulation. Biochimie 2012; 94:1041-7. [DOI: 10.1016/j.biochi.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
|
12
|
Bonatto AC, Souza EM, Oliveira MAS, Monteiro RA, Chubatsu LS, Huergo LF, Pedrosa FO. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Arch Microbiol 2012; 194:643-52. [PMID: 22382722 DOI: 10.1007/s00203-012-0799-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.
Collapse
Affiliation(s)
- Ana C Bonatto
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP19046, Curitiba, PR 81531-980, Brazil.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moure VR, Razzera G, Araújo LM, Oliveira MAS, Gerhardt ECM, Müller-Santos M, Almeida F, Pedrosa FO, Valente AP, Souza EM, Huergo LF. Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Protein Expr Purif 2011; 81:83-88. [PMID: 21963770 DOI: 10.1016/j.pep.2011.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 02/05/2023]
Abstract
The P(II) proteins comprise a family of widely distributed signal transduction proteins that integrate the signals of cellular nitrogen, carbon and energy status, and then regulate, by protein-protein interaction, the activity of a variety of target proteins including enzymes, transcriptional regulators and membrane transporters. We have previously shown that the P(II) proteins from Azospirillum brasilense, GlnB and GlnZ, do not alter their migration behavior under native gel electrophoresis following incubated for a few minutes at 95°C. This data suggested that P(II) proteins were either resistant to high temperatures and/or that they could return to their native state after having been unfolded by heat. Here we used (1)H NMR to show that the A. brasilense GlnB is stable up to 70°C. The melting temperature (Tm) of GlnB was determined to be 84°C using the fluorescent dye Sypro-Orange. P(II) proteins from other Proteobacteria also showed a high Tm. We exploited the thermo stability of P(II) by introducing a thermal treatment step in the P(II) purification protocol, this step significantly improved the homogeneity of A. brasilense GlnB and GlnZ, Herbaspirillum seropedicae GlnB and GlnK, and of Escherichia coli GlnK. Only a single chromatography step was necessary to obtain homogeneities higher than 95%. NMR(1) and in vitro uridylylation analysis showed that A. brasilense GlnB purified using the thermal treatment maintained its folding and activity. The purification protocol described here can facilitate the study of P(II) protein family members.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Guilherme Razzera
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Luíza M Araújo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marco A S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Edileusa C M Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marcelo Müller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Fabio Almeida
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Ana P Valente
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil.
| |
Collapse
|
14
|
Noindorf L, Bonatto AC, Monteiro RA, Souza EM, Rigo LU, Pedrosa FO, Steffens MBR, Chubatsu LS. Role of PII proteins in nitrogen fixation control of Herbaspirillum seropedicae strain SmR1. BMC Microbiol 2011; 11:8. [PMID: 21223584 PMCID: PMC3023670 DOI: 10.1186/1471-2180-11-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In Herbaspirillum seropedicae, two PII-like proteins (GlnB and GlnK), encoded by the genes glnB and glnK, were identified. The glnB gene is monocistronic and its expression is constitutive, while glnK is located in the nlmAglnKamtB operon and is expressed under nitrogen-limiting conditions. RESULTS In order to determine the involvement of the H. seropedicae glnB and glnK gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The glnK- mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the glnK mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the glnB mutant has a wild-type phenotype. CONCLUSIONS Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in H. seropedicae.
Collapse
Affiliation(s)
- Lilian Noindorf
- National Institute of Science and Technology for Biological Nitrogen Fixation, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba, PR, 81531-980, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. J Bacteriol 2010; 192:2711-21. [PMID: 20363937 DOI: 10.1128/jb.01674-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR) and is believed to be the primary sensor of nitrogen status in the cell by sensing the level of glutamine in enteric bacteria. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) protein; P(II) in turn regulates a variety of other proteins. GlnD appears to have four distinct domains: an N-terminal nucleotidyltransferase (NT) domain; a central HD domain, named after conserved histidine and aspartate residues; and two C-terminal ACT domains, named after three of the allosterically regulated enzymes in which this domain is found. Here we report the functional analysis of these domains of GlnD from Escherichia coli and Rhodospirillum rubrum. We confirm the assignment of UTase activity to the NT domain and show that the UR activity is a property specifically of the HD domain: substitutions in this domain eliminated UR activity, and a truncated protein lacking the NT domain displayed UR activity. The deletion of C-terminal ACT domains had little effect on UR activity itself but eliminated the ability of glutamine to stimulate that activity, suggesting a role for glutamine sensing by these domains. The deletion of C-terminal ACT domains also dramatically decreased UTase activity under all conditions tested, but some of these effects are due to the competition of UTase activity with unregulated UR activity in these variants.
Collapse
|