1
|
Zaharija B, Odorčić M, Hart A, Samardžija B, Marreiros R, Prikulis I, Juković M, Hyde TM, Kleinman JE, Korth C, Bradshaw NJ. TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein. Int J Mol Sci 2022; 23:ijms231911048. [PMID: 36232351 PMCID: PMC9569677 DOI: 10.3390/ijms231911048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333–340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as “Tara” or “TAP68”) has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Odorčić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja Hart
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| | - Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| |
Collapse
|
2
|
Zaharija B, Samardžija B, Bradshaw NJ. The TRIOBP Isoforms and Their Distinct Roles in Actin Stabilization, Deafness, Mental Illness, and Cancer. Molecules 2020; 25:molecules25214967. [PMID: 33121024 PMCID: PMC7663296 DOI: 10.3390/molecules25214967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
The TRIOBP (TRIO and F-actin Binding Protein) gene encodes multiple proteins, which together play crucial roles in modulating the assembly of the actin cytoskeleton. Splicing of the TRIOBP gene is complex, with the two most studied TRIOBP protein isoforms sharing no overlapping amino acid sequence with each other. TRIOBP-1 (also known as TARA or TAP68) is a mainly structured protein that is ubiquitously expressed and binds to F-actin, preventing its depolymerization. It has been shown to be important for many processes including in the cell cycle, adhesion junctions, and neuronal differentiation. TRIOBP-1 has been implicated in schizophrenia through the formation of protein aggregates in the brain. In contrast, TRIOBP-4 is an entirely disordered protein with a highly specialized expression pattern. It is known to be crucial for the bundling of actin in the stereocilia of the inner ear, with mutations in it causing severe or profound hearing loss. Both of these isoforms are implicated in cancer. Additional longer isoforms of TRIOBP exist, which overlap with both TRIOBP-1 and 4. These appear to participate in the functions of both shorter isoforms, while also possessing unique functions in the inner ear. In this review, the structures and functions of all of these isoforms are discussed, with a view to understanding how they operate, both alone and in combination, to modulate actin and their consequences for human illness.
Collapse
|
3
|
Bradshaw NJ, Yerabham ASK, Marreiros R, Zhang T, Nagel-Steger L, Korth C. An unpredicted aggregation-critical region of the actin-polymerizing protein TRIOBP-1/Tara, determined by elucidation of its domain structure. J Biol Chem 2017; 292:9583-9598. [PMID: 28438837 DOI: 10.1074/jbc.m116.767939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.
Collapse
Affiliation(s)
| | | | | | - Tao Zhang
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Luitgard Nagel-Steger
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
4
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
5
|
Zhu Y, Wang C, Lan J, Yu J, Jin C, Huang H. Phosphorylation of Tara by Plk1 is essential for faithful chromosome segregation in mitosis. Exp Cell Res 2012; 318:2344-52. [PMID: 22820163 DOI: 10.1016/j.yexcr.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
Abstract
Trio-associated repeat on actin (Tara) is an F-actin binding protein and regulates actin cytoskeletal organization. In our previous study, we have found that Tara associates with telomeric repeat binding factor 1 (TRF1) and mediates the function of TRF1 in mitotic regulation. We also found that overexpression HECTD3, a member of HECT E3 ubiquitin ligases, enhances the ubiquitination of Tara in vivo and promotes the degradation of Tara, and such degradation of Tara facilitates cell cycle progression. However, less is known about the post-translational modification of Tara in mitosis. Here we show that Tara is a novel Polo-like kinase 1 (Plk1) target protein. Plk1 interacts with and phosphorylates Tara in vivo and in vitro. Actually, the Thr-457 in Tara was a bona fide in vivo phosphorylation site for Plk1. Interestingly, we found that the centrosomal localization of Tara depended on the Thr-457 phosphorylation and the kinase activity of Plk1. Furthermore, overexpression of non-phosphorylatable mutant of Tara caused aberrant mitosis delay in HeLa cells. Our study demonstrated that Plk1-mediated phospho-dependent centrosomal localization of Tara is important for faithful chromosome segregation, and provided novel insights into understanding on the role of Plk1 in cooperation with Tara in mitotic progression.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
6
|
Wang C, Yu J, Yuan K, Lan J, Jin C, Huang H. Plk1-mediated mitotic phosphorylation of PinX1 regulates its stability. Eur J Cell Biol 2010; 89:748-56. [PMID: 20573420 DOI: 10.1016/j.ejcb.2010.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/05/2023] Open
Abstract
PinX1 was originally identified as a Pin2/TRF1-interacting protein that suppresses telomerase activity via its telomerase inhibitor domain (TID) and regulates the nucleolar localization of TRF1 in telomerase-positive cells. In addition to its telomeric localization, PinX1 can be found in the nucleoli of human cells. Our recent studies have shown that PinX1 localizes to the chromosome periphery and kinetochores in mitosis. Depletion of PinX1 results in lagging chromosomes in mitosis and micronuclei in interphase. However, less is known about the post-translational modification of PinX1 in mitosis. Here, we show that Polo-like kinase 1 (Plk1) is a novel interacting protein of PinX1. Plk1 interacts with and phosphorylates PinX1 in vivo and in vitro. Overexpression of Plk1 promotes protein turnover of PinX1, a process that depends on ubiquitin-associated proteasomal degradation. Depletion of Plk1 using siRNA increases the stability of PinX1 at protein level in mitosis. Moreover, Plk1-mediated phosphorylation of PinX1 at five phosphorylation sites is essential for its Plk1-induced degradation. These findings suggest that Plk1 may negatively regulate the stability of PinX1 by mitotic phosphorylation.
Collapse
Affiliation(s)
- Chong Wang
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
7
|
Yu J, Lan J, Wang C, Wu Q, Zhu Y, Lai X, Sun J, Jin C, Huang H. PML3 interacts with TRF1 and is essential for ALT-associated PML bodies assembly in U2OS cells. Cancer Lett 2009; 291:177-86. [PMID: 19900757 DOI: 10.1016/j.canlet.2009.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 10/11/2009] [Accepted: 10/13/2009] [Indexed: 10/20/2022]
Abstract
Telomerase-negative cancer cells maintain their telomeres by a mechanism known as alternative lengthening of telomeres (ALT) and achieve unlimited replicative potential. A hallmark of ALT cells is the recruitment of telomeres to promyelocytic leukemia (PML) bodies and formation of ALT-associated PML bodies (APBs). Although the exact molecular mechanism of APBs assembly remains unclear, APBs assembly requires telomere and PML body-associated proteins, including TRF1 and PML. Here, we report that PML3, one of PML isoforms, is involved in APBs formation. As a new binding protein of TRF1 (telomeric repeat binding factor 1), PML3 directly interacts with TRF1 and recruits TRF1 to PML bodies in U2OS cells. More notably, depletion of PML3 by small interfering RNA does not affect PML bodies formation, but inhibits the recruitment of both TRF1 and TRF2 to APBs. Further study shows that the recruitment of TRF1 to APBs depends on its interaction with a specific PML3 isoform. Thus, the interaction of PML3 with TRF1 is isoform specific and likely to be essential for APBs assembly in U2OS cells.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun 2008; 367:805-12. [PMID: 18194665 DOI: 10.1016/j.bbrc.2008.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiquitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3 may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|