1
|
Freitas AI, Domingues L, Aguiar TQ. Bare silica as an alternative matrix for affinity purification/immobilization of His-tagged proteins. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Barbosa M, Simões H, Pinto SN, Macedo AS, Fonte P, Prazeres DMF. Fusions of a Carbohydrate Binding Module with the Small Cationic Hexapeptide RWRWRW Confer Antimicrobial Properties to Cellulose-based Materials. Acta Biomater 2022; 143:216-232. [PMID: 35257951 DOI: 10.1016/j.actbio.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. Cellulose-based dressings, for example, could be made more attractive if rendered antimicrobial. This work proposes a new strategy to modify cellulose-based materials with the short antimicrobial hexapeptide MP196 (RWRWRW-NH2) that relies on a biomolecular recognition approach based on carbohydrate binding modules (CBMs). Specifically, we focused on the modification of hydrogels, paper, and microfibrillated cellulose (MFC) with fusions of the CBM3 from Clostridium thermocellum (C. thermocellum) with derivatives of MP196. The fusions are prepared by promoting the formation of a disulfide bond between Cys-terminated derivatives of MP196 and a CBM3 that is pre-anchored in the materials. The CBM3-MP196-modified materials displayed antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) that was significantly higher when compared with the activity of materials prepared by physical adsorption of MP196. The biomolecular strategy provides a more favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept provides a toolbox for the functionalization of cellulose materials of different origins and architectures with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications as drug delivery systems, scaffolds for tissue engineering and biomaterials. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria is a critical worldwide healthcare problem. In the specific case of wound care, new and effective alternatives to currently available solutions are urgently needed. This work proposes a new strategy to modify cellulose-based materials with a short antimicrobial hexapeptide that relies on a biomolecular recognition approach based on carbohydrate binding modules. The modified materials displayed antibacterial activity against both Gram-negative and Gram-positive bacteria. The biomolecular strategy provides a favorable orientation, exposure, and distancing of the peptide from the matrix. This versatile concept offers a toolbox for the functionalization of different cellulose materials with a broad choice in peptides. Functionalization under mild biological conditions avoids further purification steps, allowing for translational research and multiple applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hélvio Simões
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - D Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022; 27:1343. [PMID: 35209132 PMCID: PMC8878547 DOI: 10.3390/molecules27041343] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life-bacteria, fungi, plants, amphibians, insects, birds and mammals-and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.
Collapse
Affiliation(s)
- Guadalupe López-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Octavio Dublan-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Daniel Arizmendi-Cotero
- Department of Industrial Engineering, Engineering Faculty, Campus Toluca, Universidad Tecnológica de México (UNITEC), Estado de México, Toluca 50160, Mexico;
| | - Leobardo Manuel Gómez Oliván
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| |
Collapse
|
4
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Pelus A, Bordes G, Barbe S, Bouchiba Y, Burnard C, Cortés J, Enjalbert B, Esque J, Estaña A, Fauré R, Henras AK, Heux S, Le Men C, Millard P, Nouaille S, Pérochon J, Toanen M, Truan G, Verdier A, Wagner C, Romeo Y, Montanier CY. A tripartite carbohydrate-binding module to functionalize cellulose nanocrystals. Biomater Sci 2021; 9:7444-7455. [PMID: 34647546 DOI: 10.1039/d1bm01156a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions. In this work, a Carbohydrate-Binding Module (CBM) was used as a central core to provide a versatile strategy to bring a large diversity of functions to cellulose surfaces. CBM3a from Clostridium thermocellum, which has a high affinity for crystalline cellulose, was flanked through linkers with a streptavidin domain and an azide group introduced through a non-canonical amino acid. Each of these two extra domains was effectively produced and functionalized with a variety of biological and chemical molecules. Structural properties of the resulting tripartite chimeric protein were investigated using molecular modelling approaches, and its potential for the multi-functionalization of cellulose was confirmed experimentally. As a proof of concept, we show that cellulose can be labelled with a fluorescent version of the tripartite protein grafted to magnetic beads and captured using a magnet.
Collapse
Affiliation(s)
- Angeline Pelus
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Gaëlle Bordes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | - Sophie Barbe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Younes Bouchiba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Callum Burnard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Brice Enjalbert
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Jeremy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Anthony K Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | - Stéphanie Heux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Claude Le Men
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | | | - Julien Pérochon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Marion Toanen
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Amandine Verdier
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Camille Wagner
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
| | | |
Collapse
|
6
|
Shi S, Shen T, Liu Y, Chen L, Wang C, Liao C. Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances. Front Vet Sci 2021; 8:664139. [PMID: 34055951 PMCID: PMC8160099 DOI: 10.3389/fvets.2021.664139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional antibiotics have made great contributions to human health and animal husbandry since the discovery of penicillin in 1928, but bacterial resistance and drug residues are growing threats to global public health due to the long-term uncontrolled application of antibiotics. There is a critical need to develop new antimicrobial drugs to replace antibiotics. Antimicrobial peptides (AMPs) are distributed in all kingdoms of life, presenting activity against pathogens as well as anticancer, anti-inflammatory, and immunomodulatory activities; consequently, they have prospects as new potential alternatives to antibiotics. Porcine myeloid antimicrobial peptides (PMAPs), the porcine cathelicidin family of AMPs, have been reported in the literature in recent years. PMAPs have become an important research topic due to their strong antibacterial activity. This review focuses on the universal trends in the biochemical parameters, structural characteristics and biological activities of PMAPs.
Collapse
Affiliation(s)
- Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Weishaupt R, Zünd JN, Heuberger L, Zuber F, Faccio G, Robotti F, Ferrari A, Fortunato G, Ren Q, Maniura‐Weber K, Guex AG. Antibacterial, Cytocompatible, Sustainably Sourced: Cellulose Membranes with Bifunctional Peptides for Advanced Wound Dressings. Adv Healthc Mater 2020; 9:e1901850. [PMID: 32159927 DOI: 10.1002/adhm.201901850] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Progressive antibiotic resistance is a serious condition adding to the challenges associated with skin wound treatment, and antibacterial wound dressings with alternatives to antibiotics are urgently needed. Cellulose-based membranes are increasingly considered as wound dressings, necessitating further functionalization steps. A bifunctional peptide, combining an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), is designed. AMPs affect bacteria via multiple modes of action, thereby reducing the evolutionary pressure selecting for antibiotic resistance. The bifunctional peptide is successfully immobilized on cellulose membranes of bacterial origin or electrospun fibers of plant-derived cellulose, with tight control over peptide concentrations (0.2 ± 0.1 to 4.6 ± 1.6 µg mm-2 ). With this approach, new materials with antibacterial activity against Staphylococcus aureus (log4 reduction) and Pseudomonas aeruginosa (log1 reduction) are developed. Furthermore, membranes are cytocompatible in cultures of human fibroblasts. Additionally, a cell adhesive CBP-RGD peptide is designed and immobilized on membranes, inducing a 2.2-fold increased cell spreading compared to pristine cellulose. The versatile concept provides a toolbox for the functionalization of cellulose membranes of different origins and architectures with a broad choice in peptides. Functionalization in tris-buffered saline avoids further purification steps, allowing for translational research and multiple applications outside the field of wound dressings.
Collapse
Affiliation(s)
- Ramon Weishaupt
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Janina N. Zünd
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Lukas Heuberger
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Flavia Zuber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Greta Faccio
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging TechnologiesDepartment of Mechanical and Process EngineeringETH Zurich Sonneggstrasse 3 Zurich 8092 Switzerland
| | - Aldo Ferrari
- EmpaSwiss Federal Laboratories for Material Science and TechnologiesLaboratory for Experimental Continuum Mechanics Überlandstrasse 129 Dübendorf 8600 Switzerland
| | - Giuseppino Fortunato
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Qun Ren
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Katharina Maniura‐Weber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Anne Géraldine Guex
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| |
Collapse
|
8
|
Gonçalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Release of Fragrances from Cotton Functionalized with Carbohydrate-Binding Module Proteins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28499-28506. [PMID: 31283162 DOI: 10.1021/acsami.9b08191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perspiration as a response to daily activity and physical exercise results in unpleasant odors that cause social unrest and embarrassment. To tackle it, functional textiles incorporating fragrances could be an effective clothing deodorizing product. This work presents two strategies for the release of β-citronellol from functionalized cotton with carbohydrate-binding module (CBM)-based complexes (OBP::GQ20::CBM/β-citronellol-approach 1 and CBM::GQ20::SP-DS3-liposome/β-citronellol-approach 2). CBM from Cellulomonas fimi was fused with the odorant-binding protein (OBP::GQ20::CBM) and with an anchor peptide with affinity to the liposome membrane (CBM::GQ20::SP-DS3). In approach 1, OBP fusion protein served as a fragrance container, whereas in approach 2, the fragrance was loaded into liposomes with a higher cargo capacity. The two strategies showed a differentiated β-citronellol release profile triggered by an acidic sweat solution. OBP::GQ20::CBM complex revealed a fast release (31.9% and 25.8% of the initial amount, after 1.5 and 24 h of exposure with acidic sweat solution, respectively), while the CBM::GQ20::SP-DS3-liposome complex demonstrated a slower and controlled release (5.9% and 10.5% of the initial amount, after 1.5 and 24 h of exposure with acidic sweat solution, respectively). Both strategies revealed high potential for textile functionalization aimed at controlled release of fragrances. The OBP::GQ20::CBM/β-citronellol complex is ideal for applications requiring fast release of a high amount of fragrance, whereas the CBM::GQ20::SP-DS3-liposome/β-citronellol complex is more suitable for prolonged and controlled release of a lower amount of β-citronellol.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 , Braga , Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 , Braga , Portugal
| | - Carla Silva
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 , Braga , Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 , Braga , Portugal
| |
Collapse
|
9
|
Lin S, Qin Z, Chen Q, Fan L, Zhou J, Zhao L. Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6847-6855. [PMID: 31132258 DOI: 10.1021/acs.jafc.9b01608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitooligosaccharide has been reported to possess diverse bioactivities. The development of novel strategies for obtaining optimum degree of polymerization (DP) chitooligosaccharides has become increasingly important. In this study, two glycoside hydrolase family 46 chitosanases were studied for immobilization on curdlan (insoluble β-1,3-glucan) using a novel carbohydrate binding module (CBM) family 56 domain from a β-1,3-glucanase. The CBM56 domain provided a spontaneous and specific sorption of the fusion proteins onto a curdlan carrier, and two fusion enzymes showed increased enzyme stability in comparison with native enzymes. Furthermore, a continuous packed-bed reactor was constructed with chitosanase immobilized on a curdlan carrier to control the enzymatic hydrolysis of chitosan. Three chitooligosaccharide products with different molecular weights were prepared in optimized reaction conditions. This study provides a novel CBM tag for the stabilization and immobilization of enzymes. The controllable hydrolysis strategy offers potential for the industrial-scale preparation of chitooligosaccharides with different desired DPs.
Collapse
Affiliation(s)
- Si Lin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhen Qin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Qiming Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Jiachun Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| |
Collapse
|
10
|
Abstract
The polymerase chain reaction (PCR) is the technique of choice used to obtain DNA for cloning, because it rapidly provides high amounts of desired DNA fragments and allows the easy introduction of extremities adequate for enzyme restriction or homologous recombination, and of artificial, native, or modified sequence elements for specific applications. In this context, the use of megaprimer-based PCR strategies allows the versatile and fast assembly and amplification of tailor-made DNA sequences readily available for cloning.In this chapter, we describe the design and use of a megaprimer-based PCR protocol to construct customized fusion genes ready for cloning into commercial expression plasmids by restriction digestion and ligation.
Collapse
|
11
|
Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 2017; 102:81-92. [DOI: 10.1007/s00253-017-8623-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
12
|
Oyama LB, Crochet JA, Edwards JE, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Hilpert K, Golyshin PN, Golyshina OV, Privé F, Hess M, Mantovani HC, Creevey CJ, Huws SA. Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Front Chem 2017; 5:51. [PMID: 28748180 PMCID: PMC5506224 DOI: 10.3389/fchem.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Collapse
Affiliation(s)
- Linda B Oyama
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Jean-Adrien Crochet
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Joan E Edwards
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Susan E Girdwood
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Alan R Cookson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's University of LondonLondon, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Olga V Golyshina
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Florence Privé
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, DavisDavis, CA, United States
| | | | - Christopher J Creevey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Sharon A Huws
- Medical Biology Centre, School of Biological Sciences, Queen's University BelfastBelfast, United Kingdom
| |
Collapse
|
13
|
Recombinant CBM-fusion technology - Applications overview. Biotechnol Adv 2015; 33:358-69. [PMID: 25689072 DOI: 10.1016/j.biotechadv.2015.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
Carbohydrate-binding modules (CBMs) are small components of several enzymes, which present an independent fold and function, and specific carbohydrate-binding activity. Their major function is to bind the enzyme to the substrate enhancing its catalytic activity, especially in the case of insoluble substrates. The immense diversity of CBMs, together with their unique properties, has long raised their attention for many biotechnological applications. Recombinant DNA technology has been used for cloning and characterizing new CBMs. In addition, it has been employed to improve the purity and availability of many CBMs, but mainly, to construct bi-functional CBM-fused proteins for specific applications. This review presents a comprehensive summary of the uses of CBMs recombinantly produced from heterologous organisms, or by the original host, along with the latest advances. Emphasis is given particularly to the applications of recombinant CBM-fusions in: (a) modification of fibers, (b) production, purification and immobilization of recombinant proteins, (c) functionalization of biomaterials and (d) development of microarrays and probes.
Collapse
|
14
|
Meiyalaghan S, Latimer JM, Kralicek AV, Shaw ML, Lewis JG, Conner AJ, Barrell PJ. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 2014; 7:777. [PMID: 25367168 PMCID: PMC4228058 DOI: 10.1186/1756-0500-7-777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022] Open
Abstract
Background The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. Results To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. Conclusion We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Philippa J Barrell
- The New Zealand Institute for Plant & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand.
| |
Collapse
|
15
|
Transmission electron microscopic morphological study and flow cytometric viability assessment of Acinetobacter baumannii susceptible to Musca domestica cecropin. ScientificWorldJournal 2014; 2014:657536. [PMID: 24883421 PMCID: PMC4032720 DOI: 10.1155/2014/657536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/29/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii infections are difficult to treat owing to the extremely limited armamentarium. Expectations about antimicrobial peptides' use as new powerful antibacterial agents have been raised on the basis of their unique mechanism of action. Musca domestica cecropin (Mdc), a novel antimicrobial peptide from the larvae of Housefly (Musca domestica), has potently active against Gram-positive and Gram-negative bacteria standard strain. Here we evaluated the antibacterial activity of Mdc against clinical isolates of MDR-A. baumannii and elucidate the related antibacterial mechanisms. The minimal inhibitory concentration (MIC) of Mdc was 4 μg/mL. Bactericidal kinetics of Mdc revealed rapid killing of A. baumannii (30 min). Flow cytometry using viability stain demonstrated that Mdc causes A. baumannii membrane permeabilization in a concentration- and time-dependent process, which correlates with the bactericidal action. Moreover, transmission electron microscopic (TEM) examination showed that Mdc is capable of disrupting the membrane of bacterial cells, resulting in efflux of essential cytoplasmic components. Overall, Mdc could be a promising antibacterial agent for MDR-A. baumannii infections.
Collapse
|
16
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014. [PMID: 24600443 DOI: 10.3389/fmicb.2014.00063.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
17
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014; 5:63. [PMID: 24600443 PMCID: PMC3928792 DOI: 10.3389/fmicb.2014.00063] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
18
|
Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L. Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog 2012; 29:17-22. [PMID: 23125137 DOI: 10.1002/btpr.1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/28/2012] [Indexed: 11/09/2022]
Abstract
Magainin-2 (MAG2) is a polycationic antimicrobial peptide isolated from the skin of the African clawed frog Xenopus laevis. It has a wide spectrum of antimicrobial activities against gram-positive and gram-negative bacteria, fungi, and induces osmotic lysis of protozoa. MAG2 also possesses antiviral and antitumoral properties. These activities make this peptide a promising candidate for therapeutic applications. Recombinant expression systems are necessary for the affordable production of large amounts of the biologically active peptide. In this work, MAG2 has been cloned to the N-terminal of a family III carbohydrate-binding module fused to the linker sequence (LK-CBM3) from Clostridium thermocellum; a formic acid recognition site was introduced between the two modules for chemical cleavage of the peptide. The recombinant protein MAG2-LK-CBM3 was expressed in Escherichia coli BL21 (DE3) and MAG2 was successfully cleaved and purified from the fusion partner LK-CBM3. Its functionality was confirmed by testing its activity against gram-negative bacteria.
Collapse
Affiliation(s)
- Reinaldo Ramos
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
19
|
Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 2012; 37:207-15. [PMID: 22800692 DOI: 10.1016/j.peptides.2012.07.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides (AMPs), which are produced by several species including insects, other animals, micro-organisms and synthesis, are a critical component of the natural defense system. With the growing problem of pathogenic organisms resistant to conventional antibiotics, especially with the emergence of NDM-1, there is increased interest in the pharmacological application of AMPs. They can protect against a broad array of infectious agents, such as bacteria, fungi, parasite, virus and cancer cells. AMPs have a very good future in the application in pharmaceuticals industry and food additive. This review focuses on the AMPs from different origins in these recent years, and discusses their various functions and relative mechanisms of action. It will provide some detailed files for clinical research of pharmaceuticals industry and food additive in application.
Collapse
Affiliation(s)
- Yanmei Li
- Biopharmaceutical Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | | | | | | | | |
Collapse
|
20
|
Wang S, Cui GZ, Song XF, Feng Y, Cui Q. Efficiency and stability enhancement of cis-epoxysuccinic acid hydrolase by fusion with a carbohydrate binding module and immobilization onto cellulose. Appl Biochem Biotechnol 2012; 168:708-17. [PMID: 22843080 DOI: 10.1007/s12010-012-9811-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Cis-epoxysuccinic acid hydrolase (CESH) is an enzyme that catalyzes cis-epoxysuccinic acid to produce enantiomeric L(+)-tartaric acid. The production of tartaric acid by using CESH would be valuable in the chemical industry because of its high yield and selectivity, but the low stability of CESH hampers its application. To improve the stability of CESH, we fused five different carbohydrate-binding modules (CBMs) to CESH and immobilized the chimeric enzymes on cellulose. The effects of the fusion and immobilization on the activity, kinetics, and stability of CESH were compared. Activity measurements demonstrated that the fusion with CBMs and the immobilization on cellulose increased the pH and temperature adaptability of CESH. The chimeric enzymes showed significantly different enzyme kinetics parameters, among which the immobilized CBM30-CESH exhibited twofold catalytic efficiency compared with the native CESH. The half-life measurements indicated that the stability of the enzyme in its free form was slightly increased by the fusion with CBMs, whereas the immobilization on cellulose significantly increased the stability of the enzyme. The immobilized CBM30-CESH showed the longest half-life, which is more than five times the free native CESH half-life at 30 °C. Therefore, most CBMs can improve enzymatic properties, and CBM30 is the best fusion partner for CESH to improve both its enzymatic efficiency and its stability.
Collapse
Affiliation(s)
- Shan Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
21
|
Lu X, Shen J, Jin X, Ma Y, Huang Y, Mei H, Chu F, Zhu J. Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli. Appl Microbiol Biotechnol 2011; 95:939-45. [DOI: 10.1007/s00253-011-3793-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 11/29/2022]
|
22
|
Wan W, Wang D, Gao X, Hong J. Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 2011; 91:789-98. [DOI: 10.1007/s00253-011-3373-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/28/2022]
|
23
|
Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Antimicrobial functionalized genetically engineered spider silk. Biomaterials 2011; 32:4255-66. [PMID: 21458065 PMCID: PMC3081935 DOI: 10.1016/j.biomaterials.2011.02.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use. Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide sequences encoding different peptides or proteins that are otherwise not found together in nature. In the present study, three new fusion proteins were designed, cloned and expressed and assessed for function, by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides. The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4 (HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the formation of β-sheets to lock in structures via physical interactions without the need for chemical cross-linking. These new functional silk proteins were assessed for antimicrobial activity against Gram - Escherichia coli and Gram + Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed. Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism (CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins with mammalian cells.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra 4806-909 Caldas das Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering (IBB), PT Government Associated Laboratory, Braga, Portugal
- Departments of Biomedical Engineering, Chemistry and Physics, Tufts University, Medford, Massachusetts 02155 USA
| | - Isabel B. Leonor
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra 4806-909 Caldas das Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering (IBB), PT Government Associated Laboratory, Braga, Portugal
| | - João F. Mano
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra 4806-909 Caldas das Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering (IBB), PT Government Associated Laboratory, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Indústrial da Gandra 4806-909 Caldas das Taipas, Guimarães, Portugal
- Institute for Biotechnology and Bioengineering (IBB), PT Government Associated Laboratory, Braga, Portugal
| | - David L. Kaplan
- Departments of Biomedical Engineering, Chemistry and Physics, Tufts University, Medford, Massachusetts 02155 USA
| |
Collapse
|
24
|
Moreira S, Castanheira P, Casal M, Faro C, Gama M. Expression of the functional carbohydrate-binding module (CBM) of human laforin. Protein Expr Purif 2010; 74:169-74. [PMID: 20600946 DOI: 10.1016/j.pep.2010.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Laforin is a human protein associated with the glycogen metabolism, composed of two structurally and functionally independent domains: a phosphatase catalytic domain and a substrate-binding module with glycogen and starch affinity. The main goal of this work is the development of a methodology for the expression of the so far poorly characterized carbohydrate-binding module (CBM) of laforin, allowing its study and development of biomedical applications. The laforin's CBM sequence was originally cloned by PCR from a human muscle cDNA library. The recombinant protein, containing laforin's CBM fused to an Arg-Gly-Asp sequence (RGD), was cloned and expressed using vector pET29a and recovered as inclusion bodies (IBs). Refolding of the IBs allowed the purification of soluble, dimeric and functional protein, according to adsorption assays using starch and glycogen. Several other experimental approaches, using both bacteria and yeast, were unsuccessfully tested, pointing towards the difficulties in producing the heterologous protein. Indeed, this is the first work reporting the production of the functional CBM from human laforin.
Collapse
Affiliation(s)
- Susana Moreira
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | | | | | | | | |
Collapse
|
25
|
Zheng X, Wang W. High–level expression of housefly cecropin A in Escherichia coli using a fusion protein. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60102-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Ramos R, Domingues L, Gama M. Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expr Purif 2010; 71:1-7. [DOI: 10.1016/j.pep.2009.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/20/2009] [Accepted: 10/25/2009] [Indexed: 11/28/2022]
|