1
|
Tamarkin-Ben-Harush A, Vasseur JJ, Debart F, Ulitsky I, Dikstein R. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. eLife 2017; 6. [PMID: 28177284 PMCID: PMC5308895 DOI: 10.7554/elife.21907] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 01/25/2023] Open
Abstract
Transcription start-site (TSS) selection and alternative promoter (AP) usage contribute to gene expression complexity but little is known about their impact on translation. Here we performed TSS mapping of the translatome following energy stress. Assessing the contribution of cap-proximal TSS nucleotides, we found dramatic effect on translation only upon stress. As eIF4E levels were reduced, we determined its binding to capped-RNAs with different initiating nucleotides and found the lowest affinity to 5'cytidine in correlation with the translational stress-response. In addition, the number of differentially translated APs was elevated following stress. These include novel glucose starvation-induced downstream transcripts for the translation regulators eIF4A and Pabp, which are also translationally-induced despite general translational inhibition. The resultant eIF4A protein is N-terminally truncated and acts as eIF4A inhibitor. The induced Pabp isoform has shorter 5'UTR removing an auto-inhibitory element. Our findings uncovered several levels of coordination of transcription and translation responses to energy stress. DOI:http://dx.doi.org/10.7554/eLife.21907.001 The production of new proteins is a complex process that occurs in two steps known as transcription and translation. During transcription, the cell copies a section of DNA to make molecules of messenger ribonucleic acid (or mRNA for short) in the nucleus of the cell. The mRNA then leaves the nucleus and enters another cell compartment called the cytoplasm, where it serves as a template to make proteins during translation. A mRNA molecule contains a sequence of building blocks known as nucleotides. There are four different types of nucleotides in mRNA and the order they appear in the sequence determines how the protein is built. Both transcription and translation consume a lot of energy so they are highly regulated and sensitive to environmental changes. However, since transcription and translation happen in different cell compartments, it is not known if and how they are coordinated under stress. Tamarkin-Ben-Harush et al. studied transcription and translation in mouse cells that were starved of glucose. The experiments show that the identity of the very first nucleotide in the mRNA – which is dictated during transcription – has a dramatic influence on the translation of the mRNA, especially when the cells are starved of glucose. This first nucleotide affects the ability of a protein called eIF4E, which recruits the machinery needed for translation, to bind to the mRNA. The experiments also show that there is a dramatic increase in the number of distinct mRNAs that are transcribed from the same section of DNA but translated in a different way during glucose starvation. The findings of Tamarkin-Ben-Harush et al. show that transcription and translation are highly coordinated when cells are starved of glucose, allowing the cells to cope with the stress. The next step is to further analyze the data to find out more about how transcription and translation are linked. DOI:http://dx.doi.org/10.7554/eLife.21907.002
Collapse
Affiliation(s)
| | - Jean-Jacques Vasseur
- Department of Nucleic Acids, IBMM UMR 5247, CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Françoise Debart
- Department of Nucleic Acids, IBMM UMR 5247, CNRS-Université Montpellier-ENSCM, Montpellier, France
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Hussein NA, Delaney TL, Tounsel BL, Liebl FLW. The Extracellular-Regulated Kinase Effector Lk6 is Required for Glutamate Receptor Localization at the Drosophila Neuromuscular Junction. J Exp Neurosci 2016; 10:77-91. [PMID: 27199570 PMCID: PMC4866800 DOI: 10.4137/jen.s32840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.
Collapse
Affiliation(s)
- Nizar A Hussein
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Brittany L Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
3
|
Cao J, He L, Lin G, Hu C, Dong R, Zhang J, Zhu H, Hu Y, Wagner CR, He Q, Yang B. Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1α. Biochem Pharmacol 2013; 89:20-30. [PMID: 24345331 DOI: 10.1016/j.bcp.2013.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Recently, HIF-1α has been recognized as the critical target of cardiac glycosides for cancer therapy, but the molecular mechanism of cardiac glycosides' inhibition of HIF-1α is still poorly understood. In the present study, we observed that neither HIF-1α mRNA levels nor HIF-1α protein degradation are affected by Ouabain. However, Ouabain was found to be associated with the regulation of HIF-1α translation. Basing on in silico, in vitro and ex vivo models of translation processing, further studies revealed that eIF4E plays a critical role in the inhibitory effect of Ouabain on HIF-1α protein synthesis, rather than mTORC1, eIF2α signaling or Na(+)/K(+)-ATPase inhibition. Mechanistically, Ouabain directly binds eIF4E, disrupts eIF4E/eIF4G association (200 μM, Inhibit rate =61 ± 3%) but not the eIF4E/mRNA complex formation (200 μM, Inhibit rate =18 ± 5%) both in vitro and in cells, thereby inhibiting the intracellular cap-dependent translation. The association between Ouabain and eIF4E not only raises the hope of using cardiac glycosides for cancer therapeutics more rational, but also offers a pharmacologic means for developing novel anti-cancer HIF-1α antagonists.
Collapse
Affiliation(s)
- Ji Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingjuan He
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guanyu Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chunqi Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Qiaojun He
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Visco C, Perrera C, Thieffine S, Sirtori FR, D'Alessio R, Magnaghi P. Development of biochemical assays for the identification of eIF4E-specific inhibitors. ACTA ACUST UNITED AC 2012; 17:581-92. [PMID: 22392810 DOI: 10.1177/1087057112438554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Control of mRNA translation plays a critical role in cell growth, proliferation, and differentiation and is tightly regulated by AKT and RAS oncogenic pathways. A key player in the regulation of this process is the mRNA 5' cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E). eIF4E contributes to malignancy by selectively enabling the translation of a limited pool of mRNAs that generally encode key proteins involved in cell cycle progression, angiogenesis, and metastasis. Several data indicate that the inhibition of eIF4E in tumor cell lines and xenograft models impairs tumor growth and induces apoptosis; eIF4E, therefore, can be considered a valuable target for cancer therapy. Targeting the cap-binding pocket of eIF4E should represent a way to inhibit all the eIF4E cellular functions. We present here the development and validation of different biochemical assays based on fluorescence polarization and surface plasmon resonance techniques. These assays could support high-throughput screening, further refinement, and characterization of eIF4E inhibitors, as well as selectivity assessment against CBP80/CBP20, the other major cap-binding complex of eukaryotic cells, overall providing a robust roadmap for development of eIF4E-specific inhibitors.
Collapse
Affiliation(s)
- Carlo Visco
- Biotechnology Department, Nerviano Medical Sciences, Nerviano (MI), Italy
| | | | | | | | | | | |
Collapse
|
5
|
Leventis R, Silvius JR. Quantitative experimental assessment of macromolecular crowding effects at membrane surfaces. Biophys J 2011; 99:2125-33. [PMID: 20923646 DOI: 10.1016/j.bpj.2010.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022] Open
Abstract
We examined how crowding of the surfaces of lipid vesicles with either grafted polyethyleneglycol (PEG) chains or bilayer-anchored protein molecules affects the binding of soluble proteins to the vesicle surface. Escherichia coli dihydrofolate reductase (DHFR, 18 kDa) or a larger fusion protein, NusA-DHFR (72 kDa), binds reversibly but with high affinity to a methotrexate-modified lipid (MTX-PE) incorporated into large unilamellar vesicles. Incorporation of phosphatidylethanolamine-PEG5000 into the vesicles strongly decreases the affinity of binding of both proteins, to a degree that varies roughly exponentially with the lateral density of the PEG chains. Covalently coupling maltose-binding protein (MBP) to the vesicle surfaces also strongly decreases the affinity of binding of NusDHFR or DHFR, to a degree that likewise varies roughly exponentially with the surface density of anchored MBP. Surface-coupled MBP strongly decreases the rate of binding of NusDHFR to MTX-PE-incorporating vesicles but does not affect the rate of NusDHFR dissociation. The large magnitudes of these effects (easily exceeding an order of magnitude for moderate degrees of surface crowding) support previous theoretical analyses and suggest that surface-crowding effects can markedly influence a variety of important aspects of protein behavior in membranes.
Collapse
Affiliation(s)
- Rania Leventis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
6
|
Jia Y, Chiu TL, Amin EA, Polunovsky V, Bitterman PB, Wagner CR. Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn7-GMP. Eur J Med Chem 2009; 45:1304-13. [PMID: 20060622 DOI: 10.1016/j.ejmech.2009.11.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/17/2009] [Accepted: 11/27/2009] [Indexed: 01/19/2023]
Abstract
Aberrant regulation of cap-dependent translation has been frequently observed in the development of cancer. Association of the cap-binding protein eIF4E with N(7)-methylated guanosine capped mRNA is the rate limiting step governing translation initiation; and therefore represents an attractive process for cancer drug discovery. Previously, replacement of the 7-Me group of the Me(7)-guanosine monophosphate with a benzyl group has been found to increase binding affinity to eIF4E. Recent X-ray crystallographic studies have revealed that the cap-binding pocket undergoes a unique structural change in order to accommodate the benzyl group. To explore the structure-activity relationships governing the affinity of N(7)-benzylated guanosine monophosphate (Bn(7)-GMP) for eIF4E, we virtually screened a library of 80 Bn(7)-GMP analogs utilizing CombiGlide as implemented in Schrodinger. A subset library of substituted Bn(7)-GMP analogs was synthesized and their dissociation constants (K(d)) were determined. Due to the poor correlation between docking/scoring results and experimental binding affinities, three-dimensional quantitative structure-activity relationship (3D-QSAR) calculations were performed. Two highly predictive and self-consistent CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) models were derived and optimized. These models may be useful for the future design of eIF4E cap-binding antagonists.
Collapse
Affiliation(s)
- Yan Jia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
7
|
Bhagatji P, Leventis R, Comeau J, Refaei M, Silvius JR. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins. ACTA ACUST UNITED AC 2009; 186:615-28. [PMID: 19687251 PMCID: PMC2733760 DOI: 10.1083/jcb.200903102] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein.
Collapse
Affiliation(s)
- Pinkesh Bhagatji
- Department of Biochemistry, McGill University, Montreal, Quebec H3G1Y6, Canada
| | | | | | | | | |
Collapse
|