1
|
Szabo E, Nemes-Nikodem E, Vass KR, Zambo Z, Zrupko E, Torocsik B, Ozohanics O, Nagy B, Ambrus A. Structural and Biochemical Investigation of Selected Pathogenic Mutants of the Human Dihydrolipoamide Dehydrogenase. Int J Mol Sci 2023; 24:10826. [PMID: 37446004 PMCID: PMC10341545 DOI: 10.3390/ijms241310826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Clinically relevant disease-causing variants of the human dihydrolipoamide dehydrogenase (hLADH, hE3), a common component of the mitochondrial α-keto acid dehydrogenase complexes, were characterized using a multipronged approach to unravel the molecular pathomechanisms that underlie hLADH deficiency. The G101del and M326V substitutions both reduced the protein stability and triggered the disassembly of the functional/obligate hLADH homodimer and significant FAD losses, which altogether eventually manifested in a virtually undetectable catalytic activity in both cases. The I12T-hLADH variant proved also to be quite unstable, but managed to retain the dimeric enzyme form; the LADH activity, both in the forward and reverse catalytic directions and the affinity for the prosthetic group FAD were both significantly compromised. None of the above three variants lent themselves to an in-depth structural analysis via X-ray crystallography due to inherent protein instability. Crystal structures at 2.89 and 2.44 Å resolutions were determined for the I318T- and I358T-hLADH variants, respectively; structure analysis revealed minor conformational perturbations, which correlated well with the residual LADH activities, in both cases. For the dimer interface variants G426E-, I445M-, and R447G-hLADH, enzyme activities and FAD loss were determined and compared against the previously published structural data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37-47 Tuzolto St., 1094 Budapest, Hungary
| |
Collapse
|
2
|
Nagy B, Polak M, Ozohanics O, Zambo Z, Szabo E, Hubert A, Jordan F, Novaček J, Adam-Vizi V, Ambrus A. Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure. Biochim Biophys Acta Gen Subj 2021; 1865:129889. [PMID: 33684457 DOI: 10.1016/j.bbagen.2021.129889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS We report the 2.9 Å resolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE The revealed structural information will support the future pharmacologically targeting of the hKGDHc.
Collapse
Affiliation(s)
- Balint Nagy
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Martin Polak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eszter Szabo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Agnes Hubert
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jiří Novaček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vera Adam-Vizi
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Shandilya M, Kumar G, Gomkale R, Singh S, Khan MA, Kateriya S, Kundu S. Multiple putative methemoglobin reductases in C. reinhardtii may support enzymatic functions for its multiple hemoglobins. Int J Biol Macromol 2021; 171:465-479. [PMID: 33428952 DOI: 10.1016/j.ijbiomac.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.
Collapse
Affiliation(s)
- Manish Shandilya
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Gaurav Kumar
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Ridhima Gomkale
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Swati Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
4
|
Szabo E, Wilk P, Nagy B, Zambo Z, Bui D, Weichsel A, Arjunan P, Torocsik B, Hubert A, Furey W, Montfort WR, Jordan F, Weiss MS, Adam-Vizi V, Ambrus A. Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants. Hum Mol Genet 2020; 28:3339-3354. [PMID: 31334547 DOI: 10.1093/hmg/ddz177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Human dihydrolipoamide dehydrogenase (hLADH, hE3) deficiency (OMIM# 246900) is an often prematurely lethal genetic disease usually caused by inactive or partially inactive hE3 variants. Here we report the crystal structure of wild-type hE3 at an unprecedented high resolution of 1.75 Å and the structures of six disease-causing hE3 variants at resolutions ranging from 1.44 to 2.34 Å. P453L proved to be the most deleterious substitution in structure as aberrations extensively compromised the active site. The most prevalent G194C-hE3 variant primarily exhibited structural alterations close to the substitution site, whereas the nearby cofactor-binding residues were left unperturbed. The G426E substitution mainly interfered with the local charge distribution introducing dynamics to the substitution site in the dimer interface; G194C and G426E both led to minor structural changes. The R460G, R447G and I445M substitutions all perturbed a solvent accessible channel, the so-called H+/H2O channel, leading to the active site. Molecular pathomechanisms of enhanced reactive oxygen species (ROS) generation and impaired binding to multienzyme complexes were also addressed according to the structural data for the relevant mutations. In summary, we present here for the first time a comprehensive study that links three-dimensional structures of disease-causing hE3 variants to residual hLADH activities, altered capacities for ROS generation, compromised affinities for multienzyme complexes and eventually clinical symptoms. Our results may serve as useful starting points for future therapeutic intervention approaches.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Piotr Wilk
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - David Bui
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Palaniappa Arjunan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15261, USA.,Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, PA, 15240, USA
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Agnes Hubert
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15261, USA.,Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, PA, 15240, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, 07102, USA
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
5
|
Ambrus A. An Updated View on the Molecular Pathomechanisms of Human Dihydrolipoamide Dehydrogenase Deficiency in Light of Novel Crystallographic Evidence. Neurochem Res 2019; 44:2307-2313. [PMID: 30847858 PMCID: PMC6776566 DOI: 10.1007/s11064-019-02766-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Dihydrolipoamide dehydrogenase (LADH, E3) deficiency is a rare (autosomal, recessive) genetic disorder generally presenting with an onset in the neonatal age and early death; the highest carrier rate has been found among Ashkenazi Jews. Acute clinical episodes usually involve severe metabolic decompensation and lactate acidosis that result in neurological, cardiological, and/or hepatological manifestations. Clinical severity is due to the fact that LADH is a common E3 subunit to the alpha-ketoglutarate, pyruvate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes, and is also a constituent in the glycine cleavage system, thus a loss in LADH function adversely affects multiple key metabolic routes. However, the severe clinical pictures frequently still do not parallel the LADH activity loss, which implies the involvement of auxiliary biochemical mechanisms; enhanced reactive oxygen species generation as well as affinity loss for multienzyme complexes proved to be key auxiliary exacerbating pathomechanisms. This review provides an overview and an up-to-date molecular insight into the pathomechanisms of this disease in light of the structural conclusions drawn from the first crystal structure of a disease-causing hE3 variant determined recently in our laboratory.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.
| |
Collapse
|
6
|
Szabo E, Mizsei R, Wilk P, Zambo Z, Torocsik B, Weiss MS, Adam-Vizi V, Ambrus A. Crystal structures of the disease-causing D444V mutant and the relevant wild type human dihydrolipoamide dehydrogenase. Free Radic Biol Med 2018; 124:214-220. [PMID: 29908278 DOI: 10.1016/j.freeradbiomed.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023]
Abstract
We report the crystal structures of the human (dihydro)lipoamide dehydrogenase (hLADH, hE3) and its disease-causing homodimer interface mutant D444V-hE3 at 2.27 and 1.84 Å resolution, respectively. The wild type structure is a unique uncomplexed, unliganded hE3 structure with the true canonical sequence. Based on the structural information a novel molecular pathomechanism is proposed for the impaired catalytic activity and enhanced capacity for reactive oxygen species generation of the pathogenic mutant. The mechanistic model involves a previously much ignored solvent accessible channel leading to the active site that might be perturbed also by other disease-causing homodimer interface substitutions of this enzyme.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary
| | - Reka Mizsei
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary
| | - Piotr Wilk
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, H-1094 Budapest, Hungary.
| |
Collapse
|
7
|
Ambrus A, Adam-Vizi V. Human dihydrolipoamide dehydrogenase (E3) deficiency: Novel insights into the structural basis and molecular pathomechanism. Neurochem Int 2017; 117:5-14. [PMID: 28579060 DOI: 10.1016/j.neuint.2017.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This review summarizes our present view on the molecular pathogenesis of human (h) E3-deficiency caused by a variety of genetic alterations with a special emphasis on the moonlighting biochemical phenomena related to the affected (dihydro)lipoamide dehydrogenase (LADH, E3, gene: dld), in particular the generation of reactive oxygen species (ROS). E3-deficiency is a rare autosomal recessive genetic disorder frequently presenting with a neonatal onset and premature death; the highest carrier rate of a single pathogenic dld mutation (1:94-1:110) was found among Ashkenazi Jews. Patients usually die during acute episodes that generally involve severe metabolic decompensation and lactic acidosis leading to neurological, cardiological, and/or hepatological manifestations. The disease owes its severity to the fact that LADH is the common E3 subunit of the alpha-ketoglutarate (KGDHc), pyruvate (PDHc), and branched-chain α-keto acid dehydrogenase complexes and is also part of the glycine cleavage system, hence the malfunctioning of LADH simultaneously incapacitates several central metabolic pathways. Nevertheless, the clinical pictures are usually not unequivocally portrayed through the loss of LADH activities and imply auxiliary mechanisms that exacerbate the symptoms and outcomes of this disorder. Enhanced ROS generation by disease-causing hE3 variants as well as by the E1-E2 subcomplex of the hKGDHc likely contributes to selected pathogeneses of E3-deficiency, which could be targeted by specific drugs or antioxidants; lipoic acid was demonstrated to be a potent inhibitor of ROS generation by hE3 in vitro. Flavin supplementation might prove to be beneficial for those mutations triggering FAD loss in the hE3 component. Selected pathogenic hE3 variants lose their affinity for the E2 component of the hPDHc, a mechanism which warrants scrutiny also for other E3-haboring complexes.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Ambrus A, Wang J, Mizsei R, Zambo Z, Torocsik B, Jordan F, Adam-Vizi V. Structural alterations induced by ten disease-causing mutations of human dihydrolipoamide dehydrogenase analyzed by hydrogen/deuterium-exchange mass spectrometry: Implications for the structural basis of E3 deficiency. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2098-2109. [PMID: 27544700 DOI: 10.1016/j.bbadis.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
Pathogenic amino acid substitutions of the common E3 component (hE3) of the human alpha-ketoglutarate dehydrogenase and the pyruvate dehydrogenase complexes lead to severe metabolic diseases (E3 deficiency), which usually manifest themselves in cardiological and/or neurological symptoms and often cause premature death. To date, 14 disease-causing amino acid substitutions of the hE3 component have been reported in the clinical literature. None of the pathogenic protein variants has lent itself to high-resolution structure elucidation by X-ray or NMR. Hence, the structural alterations of the hE3 protein caused by the disease-causing mutations and leading to dysfunction, including the enhanced generation of reactive oxygen species by selected disease-causing variants, could only be speculated. Here we report results of an examination of the effects on the protein structure of ten pathogenic mutations of hE3 using hydrogen/deuterium-exchange mass spectrometry (HDX-MS), a new and state-of-the-art approach of solution structure elucidation. On the basis of the results, putative structural and mechanistic conclusions were drawn regarding the molecular pathogenesis of each disease-causing hE3 mutation addressed in this study.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Junjie Wang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Reka Mizsei
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ, USA.
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Ambrus A, Nemeria NS, Torocsik B, Tretter L, Nilsson M, Jordan F, Adam-Vizi V. Formation of reactive oxygen species by human and bacterial pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components. Free Radic Biol Med 2015; 89:642-50. [PMID: 26456061 PMCID: PMC4684775 DOI: 10.1016/j.freeradbiomed.2015.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/18/2015] [Accepted: 10/03/2015] [Indexed: 01/25/2023]
Abstract
Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess 'moonlighting' activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Laszlo Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Mattias Nilsson
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, the State University, Newark, NJ 07102, USA
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
10
|
Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase. Arch Biochem Biophys 2013; 538:145-55. [PMID: 24012808 DOI: 10.1016/j.abb.2013.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022]
Abstract
Human dihydrolipoamide dehydrogenase (LADH, E3) is a component in the pyruvate-, alpha-ketoglutarate- and branched-chain ketoacid dehydrogenase complexes and in the glycine cleavage system. The pathogenic mutations of LADH cause severe metabolic disturbances, called E3 deficiency that often involve cardiological and neurological symptoms and premature death. Our laboratory has recently shown that some of the known pathogenic mutations augment the reactive oxygen species (ROS) generation capacity of LADH, which may contribute to the clinical presentations. A recent report concluded that elevated oxidative stress generated by the above mutants turns the lipoic acid cofactor on the E2 subunits dysfunctional. In the present contribution we generated by molecular dynamics (MD) simulation the conformation of LADH that is proposed to be compatible with ROS generation. We propose here for the first time the structural changes, which are likely to turn the physiological LADH conformation to its ROS-generating conformation. We also created nine of the pathogenic mutants of the ROS-generating conformation and again used MD simulation to detect structural changes that the mutations induced in this LADH conformation. We propose the structural changes that may lead to the modulation in ROS generation of LADH by the pathogenic mutations.
Collapse
|
11
|
Ambrus A, Torocsik B, Tretter L, Ozohanics O, Adam-Vizi V. Stimulation of reactive oxygen species generation by disease-causing mutations of lipoamide dehydrogenase. Hum Mol Genet 2011; 20:2984-95. [PMID: 21558426 DOI: 10.1093/hmg/ddr202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated pathogenic mutations relevant in dihydrolipoamide dehydrogenase (LADH; gene: Dld) deficiency, a severe human disease, to elucidate how they alter reactive oxygen species (ROS) generation and associated biophysical characteristics of LADH. Twelve known disease-causing mutants of human LADH have been expressed and purified to homogeneity from E. coli. Detailed biophysical and biochemical characterization of the mutants has been performed applying circular dichroism (CD) spectroscopy, nano-spray mass spectrometry (MS), calibrated gel filtration and flavin adenine dinucleotide-content analysis. Functional analyses revealed that four of the pathogenic mutations significantly stimulated the ROS-generating activity of LADH and also increased its sensitivity to an acidic shift in pH. LADH activity was reduced by variable extents in the mutants exhibiting excessive ROS generation. It is remarkable that in the P453L mutant, enzyme activity was nearly completely lost with a ROS-forming activity becoming dominant, whereas the G194C mutation, common among Ashkenazi Jews, resulted in no alteration in LADH activity but a gain in the ROS-generating activity. There have been neither major conformational alterations nor monomerization of the functional homodimer of LADH associated with the higher ROS-generating capacity as measured by CD spectroscopy and size-exclusion chromatography combined with nano-spray MS, respectively. The excessive ROS generation of selected LADH mutants could be an important factor in the pathology and clinical presentation of human LADH deficiency and raises the possibility of an antioxidant therapy in the treatment of this condition.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, Semmelweis University, Neurobiochemical Group of Hungarian Academy of Sciences, Budapest, 1094, Hungary
| | | | | | | | | |
Collapse
|
12
|
Cloning and purification of recombinant silkworm dihydrolipoamide dehydrogenase expressed in Escherichia coli. Protein Expr Purif 2010; 72:95-100. [PMID: 20093189 DOI: 10.1016/j.pep.2010.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/20/2022]
Abstract
Dihydrolipoamide dehydrogenase (DLDH), a flavin-dependent oxidoreductase is essential for energy metabolism. As an oxidoreductase it catalyzes the NAD(+)-dependent oxidation of dihydrolipoamide. In this study, a putative Bombyx mori dihydrolipoamide dehydrogenase (BmDLDH) gene was cloned, expressed, purified and characterized for the first time. The BmDLDH gene was amplified from a pool of silkworm cDNAs by PCR and cloned into Escherichia coli expression vector pET-28a(+). The recombinant His-tagged BmDLDH protein was expressed in E. coli BL21 (DE3) and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis. Furthermore, the oxidoreductase activity in the reverse reaction indicated that the soluble recombinant BmDLDH produced at lower growth temperature was able to catalyze the lipoamide-dependent oxidation of NADH.
Collapse
|
13
|
|
14
|
Ambrus A, Tretter L, Adam-Vizi V. Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. J Neurochem 2009; 109 Suppl 1:222-9. [PMID: 19393031 DOI: 10.1111/j.1471-4159.2009.05942.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dihydrolipoamide dehydrogenase (LADH) is a flavo-enzyme that serves as a subunit of alpha-ketoglutarate dehydrogenase complex (alpha-KGDHC). Reactive oxygen species (ROS) generation by alpha-KGDHC has been assigned to LADH (E3 subunit) and explained by the diaphorase activity of E3. Dysfunctions of alpha-KGDHC and concurrent ROS production have been implicated in neurodegeneration, ischemia-reperfusion, and other pathological conditions. In this work we investigated the in-depth details of ROS generation by isolated LADH and alpha-KGDHC. We found a parallel generation of superoxide and hydrogen peroxide by the E3 subunit of alpha-KGDHC which could be blocked by lipoic acid (LA) acting on a site upstream of the E3 subunit. The pathologically relevant ROS generation (at high NADH/NAD+ ratio and low pH) in the reverse mode of alpha-KGDHC could also be inhibited by LA. Our results contradict the previously proposed mechanism for pH-dependent ROS generation by LADH, showing no disassembling of the E3 functional homodimer at acidic pH using a physiologically relevant method for the examination. It is also suggested that LA could be beneficial in reducing the cell damage related to excessive ROS generation under pathological conditions.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, Neurobiochemical Research Group, Hungarian Academy of Sciences and Szentagothai Janos Knowledge Center, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|