1
|
Gutmann S, Faschingeder F, Tauer C, Koch K, Cserjan-Puschmann M, Striedner G, Grabherr R. Site-Directed Genome Integration via Recombinase-Mediated Cassette Exchange (RMCE) in Escherichia coli. ACS Synth Biol 2025. [PMID: 40209274 DOI: 10.1021/acssynbio.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
The gold standard for successful genome integration in Escherichia coli is the homologous recombination by the bacteriophage-inspired lambda Red system. This method uses the bacteriophage lambda Red recombination proteins to promote homologous recombination between a target DNA sequence and a DNA fragment, which is introduced into the bacterial cell by electroporation. It allows researchers to create specific genetic changes in bacterial genomes, making it a valuable tool for studies in microbiology and biotechnology. However, this system is not without limitations, which are characteristic of its working mechanism and remain to present challenges. The most formidable constraints stem from nucleotide sequences that contain self-homology or homologies to the host genome. These instances lead to uncontrolled homologous recombination events, consequently hindering the desired integration event. Furthermore, handling very large fragments can also be problematic, although, in many instances, this can be overcome by multiple lambda Red integrations in a row. In this study, we illustrate that the limitations associated with the lambda Red system can be overcome through the application of recombinase-mediated cassette exchange (RMCE). This enables the genome integration of larger and more complex DNA fragments and facilitates new research opportunities.
Collapse
Affiliation(s)
- Stephan Gutmann
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| | - Felix Faschingeder
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| | - Karin Koch
- Biopharma Austria, Process Science, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Vienna 1120, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, BOKU University, Department of Biotechnology and Food Science, Vienna 1190, Austria
| |
Collapse
|
2
|
Sankari S, Babu VM, Bian K, Alhhazmi A, Andorfer MC, Avalos DM, Smith TA, Yoon K, Drennan CL, Yaffe MB, Lourido S, Walker GC. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria. Nat Microbiol 2022; 7:1453-1465. [PMID: 35953657 PMCID: PMC9420810 DOI: 10.1038/s41564-022-01192-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.
Collapse
Affiliation(s)
- Siva Sankari
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vignesh M.P. Babu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Areej Alhhazmi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dante M. Avalos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tyler A. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kwan Yoon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, and Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA 02139, USA.,Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Sebastian Lourido
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Sun M, Gao AX, Li A, Liu X, Wang R, Yang Y, Li Y, Liu C, Bai Z. Bicistronic design as recombinant expression enhancer: characteristics, applications, and structural optimization. Appl Microbiol Biotechnol 2021; 105:7709-7720. [PMID: 34596722 DOI: 10.1007/s00253-021-11611-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
The bicistronic design (BCD) is characterized by a short fore-cistron sequence and a second Shine-Dalgarno (SD2) sequence upstream of the target gene. The outstanding performance of this expression cassette in promoting recombinant protein production has attracted attention. Recently, the application of the BCD has been further extended to gene expression control, protein translation monitoring, and membrane protein production. In this review, we summarize the characteristics, molecular mechanisms, applications, and structural optimization of the BCD expression cassette. We also specifically discuss the challenges that the BCD system still faces. This is the first review of the BCD expression strategy, and it is believed that an in-depth understanding of the BCD will help researchers to better utilize and develop it. KEY POINTS: • Summary of the characteristics and molecular mechanisms of the BCD system. • Review of the actual applications of the BCD expression cassette. • Summary of the structural optimization of the BCD system.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - An Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Rongbing Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Li D, Fu G, Tu R, Jin Z, Zhang D. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Microb Cell Fact 2019; 18:17. [PMID: 30691455 PMCID: PMC6348689 DOI: 10.1186/s12934-019-1066-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Recombinant human Fibroblast growth factor 21 (rhFGF21) is an endocrine hormone that has profound effects on treatment of metabolic diseases. However, rhFGF21 is prone to form inclusion body when expressed in bacteria, which results in, the downstream process of purification of bioactive rhFGF21 is time-consuming and labor intensive. The aim of this work is to explore a new method for improving the soluble expression and secretion level of rhFGF21 in B. subtilis. Results A codon optimized rhFGF21 gene was expressed under the control of a strong inducible promoter PmalA in B. subtilis. A mini-cistron cassette (from gsiB) was located upstream of rhFGF21 in expression vector (pMATEFc5), which could reduce the locally stabilized mRNA secondary structure of transcripts and enhance the efficiency of translation initiation. Then various chaperones were further overexpressed to improve the expression efficiency of rhFGF21. Results showed that overexpression of the chaperone DnaK contributed to the increase of solubility of rhFGF21. Moreover, an extracellular proteases deficient strain B. subtilis Kno6cf was used to accumulate the secreted rhFGF21 solidly. In addition, eleven signal peptides from B. subtilis were evaluated and the SPdacB appeared the highest secretion yield of rhFGF21 in B. subtilis. Finally, the combinatorial optimized strain achieved an about ninefold increase of the soluble rhFGF21 production after 24 h of flask fermentation in comparison with the initial production strain. Conclusion This work provided a comprehensive strategy for secretory expressing the heterologous protein rhFGF21 in B. subtilis. To our knowledge, this is the first report of the highly efficient production of rhFGF21 in B. subtilis and this approach may provide some suggestions for heterologous proteins production in B. subtilis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1066-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dandan Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
5
|
Roy V, Roth R, Berge M, Chitta R, Vajrala S, Kuntumalla S, E Schmelzer A, Schoner R. A bicistronic vector with destabilized mRNA secondary structure yields scalable higher titer expression of human neurturin in E. coli. Biotechnol Bioeng 2017; 114:1753-1761. [PMID: 28369693 DOI: 10.1002/bit.26299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/22/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Abstract
Human neurturin (NTN) is a cystine knot growth factor with potential therapeutic use in diseases such as Parkinson's and diabetes. Scalable high titer production of native NTN is particularly challenging because of the cystine knot structure which consists of an embedded ring comprised of at least three disulfide bonds. We sought to pursue enhanced scalable production of NTN in Escherichia coli. Our initial efforts focused on codon optimization of the first two codons following AUG, but these studies resulted in only a marginal increase in NTN expression. Therefore, we pursued an alternative strategy of using a bicistronic vector for NTN expression designed to reduce mRNA secondary structure to achieve increased ribosome binding and re-initiation. The first cistron was designed to prevent sequestration of the translation initiation region in a secondary conformation. The second cistron, which contained the NTN coding sequence itself, was engineered to disrupt double bonded base pairs and destabilize the secondary structure for ribosome re-initiation. The ensemble approach of reducing NTN's mRNA secondary structure and using the bicistronic vector had an additive effect resulting in significantly increased NTN expression. Our strain selection studies were conducted in a miniaturized bioreactor. An optimized strain was selected and scaled up to a 100 L fermentor, which yielded an inclusion body titer of 2 g/L. The inclusion bodies were refolded to yield active NTN. We believe that our strategy is applicable to other candidate proteins that are difficult-to-express due to stable mRNA secondary structures. Biotechnol. Bioeng. 2017;114: 1753-1761. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Varnika Roy
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Robert Roth
- Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Mark Berge
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Rajesh Chitta
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Sucheta Vajrala
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | | | - Albert E Schmelzer
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Ron Schoner
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| |
Collapse
|
6
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
7
|
Tuan-Anh T, Ly LT, Viet NQ, Bao PT. Novel methods to optimize gene and statistic test for evaluation - an application for Escherichia coli. BMC Bioinformatics 2017; 18:100. [PMID: 28187713 PMCID: PMC5303253 DOI: 10.1186/s12859-017-1517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Background Since the recombinant protein was discovered, it has become more popular in many aspects of life science. The value of global pharmaceutical market was $87 billion in 2008 and the sales for industrial enzyme exceeded $4 billion in 2012. This is strong evidence showing the great potential of recombinant protein. However, native genes introduced into a host can cause incompatibility of codon usage bias, GC content, repeat region, Shine-Dalgarno sequence with host’s expression system, so the yields can fall down significantly. Hence, we propose novel methods for gene optimization based on neural network, Bayesian theory, and Euclidian distance. Result The correlation coefficients of our neural network are 0.86, 0.73, and 0.90 in training, validation, and testing process. In addition, genes optimized by our methods seem to associate with highly expressed genes and give reasonable codon adaptation index values. Furthermore, genes optimized by the proposed methods are highly matched with the previous experimental data. Conclusion The proposed methods have high potential for gene optimization and further researches in gene expression. We built a demonstrative program using Matlab R2014a under Mac OS X. The program was published in both standalone executable program and Matlab function files. The developed program can be accessed from http://www.math.hcmus.edu.vn/~ptbao/paper_soft/GeneOptProg/.
Collapse
Affiliation(s)
- Tran Tuan-Anh
- Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Le Thi Ly
- School of Biotechnology, VNUHCM-International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Ngo Quoc Viet
- Faculty of Information Technology, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
| | - Pham The Bao
- Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
Expression and purification of active mouse and human NEIL3 proteins. Protein Expr Purif 2012; 84:130-9. [PMID: 22569481 DOI: 10.1016/j.pep.2012.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3Δ324), as well as the glycosylase domain of human Neil3 (NEIL3Δ324). The purified Neil3 proteins are all active, and NEIL3Δ324 exhibits similar glycosylase/lyase activity as MmuNeil3Δ324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3Δ324 and NEIL3Δ324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies.
Collapse
|
9
|
Gvritishvili AG, Leung KW, Tombran-Tink J. Codon preference optimization increases heterologous PEDF expression. PLoS One 2010; 5:e15056. [PMID: 21152082 PMCID: PMC2994832 DOI: 10.1371/journal.pone.0015056] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/04/2010] [Indexed: 12/26/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is widely known for its neurotrophic and antiangiogenic functions. Efficacy studies of PEDF in animal models are limited because of poor heterologous protein yields. Here, we redesigned the human PEDF gene to preferentially match codon frequencies of E coli without altering the amino acid sequence. Following de novo synthesis, codon optimized PEDF (coPEDF) and the wtPEDF genes were cloned into pET32a containing a 5′ thioredoxin sequence (Trx) and the recombinant Trx-coPEDF or Trx-wtPEDF fusion constructs expressed in native and two tRNA augmented E coli hosts - BL21-CodonPlus(DE3)-RIL and BL21-CodonPlus(DE3)-RP, carrying extra copies of tRNAarg,ile,leu and tRNAarg,pro genes , respectively. Trx-PEDF fusion proteins were isolated using Ni-NTA metal affinity chromatography and PEDF purified after cleavage with factor Xα. Protein purity and identity were confirmed by western blot, MALDI-TOF, and UV/CD spectral analyses. Expression of the synthetic gene was ∼3.4 fold greater (212.7 mg/g; 62.1 mg/g wet cells) and purified yields ∼4 fold greater (41.1 mg/g; 11.3 mg/g wet cell) than wtPEDF in the native host. A small increase in expression of both genes was observed in hosts supplemented with rare tRNA genes compared to the native host but expression of coPEDF was ∼3 fold greater than wtPEDF in both native and codon-bias-adjusted E coli strains. ΔGs at −3 to +50 of the Trx site of both fusion genes were −3.9 kcal/mol. Functionally, coPEDF was equally as effective as wtPEDF in reducing oxidative stress, promoting neurite outgrowth, and blocking endothelial tube formation. These findings suggest that while rare tRNA augmentation and mRNA folding energies can significantly contribute to increased protein expression, preferred codon usage, in this case, is advantageous to translational efficiency of biologically active PEDF in E coli. This strategy will undoubtedly fast forward studies to validate therapeutic utility of PEDF in vivo.
Collapse
Affiliation(s)
- Anzor G. Gvritishvili
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Kar Wah Leung
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Joyce Tombran-Tink
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Ophthalmology, Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst) 2009; 9:177-90. [PMID: 20031487 DOI: 10.1016/j.dnarep.2009.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 11/22/2022]
Abstract
The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from gamma-irradiated DNA. MtuFpg1 has substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products. The kinetic parameters of the MtuFpg1, MtuNei1 and MtuNth proteins on selected substrates were also determined and compared to those of their E. coli homologs.
Collapse
|
11
|
Han JH, Choi YS, Kim WJ, Jeon YH, Lee SK, Lee BJ, Ryu KS. Codon optimization enhances protein expression of human peptide deformylase in E. coli. Protein Expr Purif 2009; 70:224-30. [PMID: 19825416 DOI: 10.1016/j.pep.2009.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 01/27/2023]
Abstract
Human peptide deformylase (hPDF), located in the mitochondria, has recently become a promising target for anti-cancer therapy. However, the expression of the hPDF gene in Escherichia coli is not efficient likely due to extremely high levels of GC content as well as the presence of rare codons. We performed codon optimization of the hPDF gene in order to reduce GC content and to eliminate rare codons. Putative stable secondary structures of the optimized gene were also reduced. Codon optimization increased the expression of hPDF protein (residues 63-243) presumably by reducing the GC content. A large amount of soluble hPDF was obtained upon its fusion with thioredoxin (Trx-hPDF), although an insoluble fraction was still dominant. We confirmed that Co(2+) is an optimal metal for increasing the activity of purified Trx-hPDF, and that actinonin acts as an efficient inhibitor. Therefore, a large amount of purified hPDF protein would provide many benefits for the screening of various drug candidates.
Collapse
Affiliation(s)
- Ji-Hoon Han
- Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|