1
|
Donald H, Blane A, Buthelezi S, Naicker P, Stoychev S, Majakwara J, Fanucchi S. Assessing the dynamics and macromolecular interactions of the intrinsically disordered protein YY1. Biosci Rep 2023; 43:BSR20231295. [PMID: 37815922 PMCID: PMC10611921 DOI: 10.1042/bsr20231295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023] Open
Abstract
YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.
Collapse
Affiliation(s)
- Heather Donald
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Ashleigh Blane
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sindisiwe Buthelezi
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Previn Naicker
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Stoyan Stoychev
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Jacob Majakwara
- School of Statistics and Actuarial Science, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Figiel M, Szubert F, Luchinat E, Bonarek P, Baranowska A, Wajda-Nikiel K, Wilamowski M, Miłek P, Dziedzicka-Wasylewska M, Banci L, Górecki A. Zinc controls operator affinity of human transcription factor YY1 by mediating dimerization via its N-terminal region. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194905. [PMID: 36581245 DOI: 10.1016/j.bbagrm.2022.194905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Human protein Yin Yang 1 (YY1) controls the transcription of hundreds of genes both positively and negatively through interactions with a wide range of partner proteins. Results presented here from proteolytic sensitivity, calorimetry, circular dichroism, fluorescence, NMR, size-exclusion chromatography, SELEX, and EMSA show that purified YY1 forms dimers via its disordered N-terminal region with strong zinc-ion concentration dependence. The YY1 dimer is shown to bind tandem repeats of a canonical recognition DNA sequence with high affinity, and analysis of human YY1 regulatory sites shows that many contain repeats of its recognition elements. YY1 dimerization may compete with partner protein interactions, making control by zinc ion concentration a previously unrecognized factor affecting YY1 gene regulation. Indeed, YY1 is known to be important in many pathogenic processes, including neoplasia, in which zinc ion concentrations are altered. The present results incentivize studies in vivo or in vitro that explore the role of zinc ion concentration in YY1-mediated gene expression.
Collapse
Affiliation(s)
- Małgorzata Figiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Filip Szubert
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Baranowska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Wajda-Nikiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mateusz Wilamowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Piotr Miłek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, 50019, Florence, Italy
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Figiel M, Łakomska J, Miłek P, Dziedzicka‐Wasylewska M, Górecki A. The transcription factor
YY
2 has less momentous properties of an intrinsically disordered protein than its paralog
YY
1. FEBS Lett 2019; 593:1787-1798. [DOI: 10.1002/1873-3468.13457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Małgorzata Figiel
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Julia Łakomska
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Piotr Miłek
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Marta Dziedzicka‐Wasylewska
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| |
Collapse
|
4
|
Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology 2018; 516:165-175. [PMID: 29407374 DOI: 10.1016/j.virol.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, United States
| | - Oya CingÖz
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Yosef Sabo
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
5
|
Górka AK, Górecki A, Dziedzicka-Wasylewska M. Site-directed fluorescence labeling of intrinsically disordered region of human transcription factor YY1: The inhibitory effect of zinc ions. Protein Sci 2017; 27:390-401. [PMID: 29024161 DOI: 10.1002/pro.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022]
Abstract
Site-specific labeling of proteins with fluorescent dyes allows the study of protein structure and function using a wide variety of fluorescent techniques. However, specific labeling is not trivial in the case of proteins containing multiple cysteine residues. An example of such a protein is transcription factor Yin Yang 1, which comprises eight cysteine residues in four C2H2 type zinc fingers in the C-terminal region. Kinetic measurements of the labeling process allowed us to develop preparative labeling of three cysteine residues differently introduced to the N-terminal, disordered fragment of the protein. The protocol developed in the present study allows to prepare the protein with high recovery yield and high selectivity of the labeling. This was confirmed using proteolytic digestion and spectroscopic approach. The labeling process was significantly affected by the presence of zinc ions and was dependent on the localization of the engineered cysteine residue. This is the first known example of the use of cysteine metal protection and labeling (CyMPL) technology for the labeling of protein regions with no stable secondary structures.
Collapse
Affiliation(s)
- Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Nieborak A, Górecki A. Significance of the pathogenic mutation T372R in the Yin Yang 1 protein interaction with DNA--thermodynamic studies. FEBS Lett 2016; 590:838-47. [PMID: 26910132 DOI: 10.1002/1873-3468.12106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
Abstract
This work focuses on the pathogenic missense mutation in YY1 protein correlated with insulinomas. Based on in vitro studies, we demonstrate that the mutation does not affect the secondary structure of either zinc fingers or the N-terminal fragment (NTF) of the protein. Apart from a slight increase in the protein's compactness, no changes in the tertiary structure were observed. The introduced mutation significantly alters DNA-binding properties, both the affinity and enthalpy-entropy contribution of the process, which are highly dependent on the recognized sequence. Obtained results indicate concerted rather than a modular mode of sequence recognition by YY1 with the significant impact of a disordered NTF.
Collapse
Affiliation(s)
- Anna Nieborak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Górecki A, Bonarek P, Górka AK, Figiel M, Wilamowski M, Dziedzicka-Wasylewska M. Intrinsic disorder of human Yin Yang 1 protein. Proteins 2015; 83:1284-96. [PMID: 25963536 DOI: 10.1002/prot.24822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 01/26/2023]
Abstract
YY1 (Yin Yang 1) is a zinc finger protein with an essential role in various biological functions via DNA- and protein-protein interactions with numerous partners. YY1 is involved in the regulation of a broad spectrum of cellular processes such as embryogenesis, proliferation, tumorigenesis, and snRNA transcription. The more than 100 reported targets of the YY1 protein suggest that it contains intrinsically disordered regions that are involved in such diverse interactions. Here, we present a study of the structural properties of human YY1 using several biochemical and biophysical techniques (fluorescence, circular dichroism, gel filtration chromatography, proteolytic susceptibility) together with various bioinformatics approaches. To facilitate our exploration of the YY1 structure, the full-length protein as well as an N-terminal fragment (residues 1-295) and the C-terminal DNA binding domain were used. We found the N-terminus to be a non-compact fragment of YY1 with little residual secondary structure and lacking a well-defined tertiary structure. The results of our study indicate that YY1 belongs to the family of intrinsically disordered proteins (IDPs), which exist natively in a partially unfolded conformation.
Collapse
Affiliation(s)
- Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Adam Kazimierz Górka
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Małgorzata Figiel
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Mateusz Wilamowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
8
|
Golebiowski FM, Górecki A, Bonarek P, Rapala-Kozik M, Kozik A, Dziedzicka-Wasylewska M. An investigation of the affinities, specificity and kinetics involved in the interaction between the Yin Yang 1 transcription factor and DNA. FEBS J 2012; 279:3147-58. [PMID: 22776217 DOI: 10.1111/j.1742-4658.2012.08693.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human transcription factor Yin Yang 1 (YY1) is a four zinc-finger protein that regulates a large number of genes with various biological functions in processes such as development, carcinogenesis and B-cell maturation. The natural binding sites of YY1 are relatively unconserved and have a short core sequence (CCAT). We were interested in determining how YY1 recognizes its binding sites and achieves the necessary sequence selectivity in the cell. Using fluorescence anisotropy, we determined the equilibrium dissociation constants for selected naturally occurring YY1 binding sites that have various levels of similarity to the consensus sequence. We found that recombinant YY1 interacts with its specific binding sites with relatively low affinities from the high nanomolar to the low micromolar range. Using a fluorescence anisotropy competition assay, we determined the affinity of YY1 for non-specific DNA to be between 30 and 40 μm, which results in low specificity ratios of between 3 and 220. Additionally, surface plasmon resonance measurements showed rapid association and dissociation rates, suggesting that the binding strength is regulated through changes in both k(a) and k(d). In conclusion, we propose that, in the cell, YY1 may achieve higher specificity by associating with co-regulators or as a part of multi-subunit complexes.
Collapse
Affiliation(s)
- Filip M Golebiowski
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
9
|
Belak ZR, Nair M, Ovsenek N. Parameters for effective in vitro production of zinc finger nucleic acid-binding proteins. Biotechnol Appl Biochem 2011; 58:166-74. [DOI: 10.1002/bab.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/14/2011] [Indexed: 12/21/2022]
|