1
|
Reuter K, Ficner R. RNA-modification by Base Exchange: Structure, Function and Application of tRNA-guanine Transglycosylases. J Mol Biol 2025:168980. [PMID: 39956694 DOI: 10.1016/j.jmb.2025.168980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
tRNA-guanine transglycosylases (TGT) occur in all domains of life. They are unique among RNA-modifying enzymes as they exchange a guanine base in the primary RNA transcript by various 7-substituted 7-deazaguanines leading to the modified nucleosides queuosine and archaeosine. Archaeosine is found in the D-loop of archaeal tRNAs, queuosine in the anticodon of bacterial and eukaryotic tRNAs specific for Asp, Asn, His and Tyr. Structural and functional studies revealed a common base-exchange mechanism for all TGTs. Nonetheless, there are also significant differences between TGTs, which will be discussed here. It concerns the specificity for different 7-deazaguanine substrates as well as the recognition of substrate tRNAs. For queuosine TGT an anticodon stem-loop containing the UGU recognition motif is a minimal substrate sufficient for binding to the active site, however, full-length tRNA is bound with higher affinity due to multiple interactions with the dimeric enzyme. Archaeal TGT also binds tRNAs as homodimer, even though the interaction pattern is very different and results in a large change of tRNA conformation. Interestingly, a closely related enzyme, DpdA, exchanges guanine by 7-cyano-7-deazguanine (preQ0) in double stranded DNA of several bacteria. Bacterial TGT is a target for structure-based drug design, as the virulence of Shigella depends on TGT activity, and mammalian TGT has been used for the treatment of murine experimental autoimmune encephalomyelitis, a model for chronic multiple sclerosis. Furthermore, TGT has become a valuable tool in nucleic acid chemistry, as it facilitates the incorporation of non-natural bases in tRNA molecules, e.g. for labelling or cross-linking purposes.
Collapse
Affiliation(s)
- Klaus Reuter
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marburg Germany.
| | - Ralf Ficner
- Institut für Mikrobiologie und Genetik GZMB Georg-August-Universität Göttingen Göttingen Germany.
| |
Collapse
|
2
|
Fujita S, Sugio Y, Kawamura T, Yamagami R, Oka N, Hirata A, Yokogawa T, Hori H. ArcS from Thermococcus kodakarensis transfers L-lysine to preQ 0 nucleoside derivatives as minimum substrate RNAs. J Biol Chem 2024; 300:107505. [PMID: 38944122 PMCID: PMC11298593 DOI: 10.1016/j.jbc.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
3
|
Identification of a radical SAM enzyme involved in the synthesis of archaeosine. Nat Chem Biol 2019; 15:1148-1155. [DOI: 10.1038/s41589-019-0390-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/16/2019] [Indexed: 01/27/2023]
|
4
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
5
|
Kawamura T, Hirata A, Ohno S, Nomura Y, Nagano T, Nameki N, Yokogawa T, Hori H. Multisite-specific archaeosine tRNA-guanine transglycosylase (ArcTGT) from Thermoplasma acidophilum, a thermo-acidophilic archaeon. Nucleic Acids Res 2015; 44:1894-908. [PMID: 26721388 PMCID: PMC4770233 DOI: 10.1093/nar/gkv1522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeosine (G+), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G+ by archaeosine synthase. However, tRNALeu from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G+13 and G+15 modifications. In this study, we focused on the biosynthesis mechanism of G+13 and G+15 modifications in this tRNALeu. Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNALeu transcript with 14C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNALeu variants were expressed. Mass spectrometry analysis of purified tRNALeu variants revealed the modifications of G+13 and G+15 in the wild-type tRNALeu. Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G+13 and G+15 modifications.
Collapse
Affiliation(s)
- Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Ohno
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Yuichiro Nomura
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Tomoko Nagano
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Tenjin 1-5-1, Kiryu, Gunma 376-8515, Japan
| | - Takashi Yokogawa
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
6
|
Nomura Y, Ohno S, Nishikawa K, Yokogawa T. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase. Genes Cells 2015; 21:41-52. [PMID: 26663416 DOI: 10.1111/gtc.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
In many archaeal tRNAs, archaeosine is found at position 15. During archaeosine biosynthesis, archaeal tRNA-guanine transglycosylase (ArcTGT) first replaces the guanine base at position 15 with 7-cyano-7-deazaguanine (preQ0). In this study, we investigated whether modified nucleosides in tRNA substrates would affect ArcTGT incorporation of preQ0. We prepared a series of hypomodified tRNAs(Ser)(GGA) from Escherichia coli strains lacking each tRNA-modifying enzyme. Measurement of ArcTGT kinetic parameters with the various tRNAs(Ser)(GGA) as substrates showed that the Km decreased due to the lack of modified nucleosides. The tRNAs(Ser)(GGA) melting profiles resulted in experimental evidence showing that each modified nucleoside in tRNA(Ser)(GGA) enhanced tRNA stability. Furthermore, the ArcTGT K(m) strongly correlated with the melting temperature (T(m)), suggesting that the unstable tRNA containing fewer modified nucleosides served as a better ArcTGT substrate. These results show that preQ0 incorporation into tRNA by ArcTGT takes place early in the archaeal tRNA modification process.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
7
|
Synthesis of small interfering RNAs containing acetal-type nucleoside analogs at their 3′-ends and analysis of their silencing activity and their ability to bind to the Argonaute2 PAZ domain. Eur J Med Chem 2015; 103:460-72. [DOI: 10.1016/j.ejmech.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 02/08/2023]
|