1
|
Ogundolie FA, Saliu TP, Okpara MO, Njikam JM, Olajuyigbe FM, Ajele JO, Kumar GN. In silico and structural analysis of Bacillus licheniformis FAO.CP7 pullulanase isolated from cocoa (Theobroma cacao L.) pod waste. BMC Microbiol 2025; 25:261. [PMID: 40307708 PMCID: PMC12042331 DOI: 10.1186/s12866-025-03958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Pullulanase (EC 3.2.1.41) is an important debranching enzyme that plays a critical role in maximizing the abundant energy present in branched polysaccharides. Its unique ability to efficiently degrade branched polysaccharides makes it crucial in industries like biofuels, food, and pharmaceuticals. Therefore, discovering microbes that produce pullulanase and thrive in harsh industrial conditions holds significant potential for optimizing large-scale bioprocessing. This unique property has made pullulanase an important enzyme in the industry. Thus, the search for microbes that have the pullulanase production properties and capacity to withstand harsh industrial conditions will be of high industrial relevance. Therefore, this study aimed to amplify, sequence, and molecularly characterize the pullulanase gene encoding extracellular pullulanase in Bacillus licheniformis strain FAO.CP7 (Accession No: MN150530.1.) which was obtained from cocoa pods using several bioinformatics tools. The amplified PulA gene had a nucleotide sequence of 2247 base pairs encoding a full-length open reading frame (ORF) pullulanase protein of 748 amino-acids residues with molecular weight 82.39 kDa and theoretical isoelectric point of 6.47, respectively. The deduced pullulanase protein had an aliphatic index of 77.66. Using BLASTp, the deduced amino acid sequence of the pullulanase gene showed 85% homologies with those from B. licheniformis strains. Multiple sequence alignment of PulA protein sequence showed that it contains YNWGYNP motif which is also found in all type I pullulanase protein sequences analysed. The restriction mapping of the gene showed that it can be digested with several restriction enzymes. Further analysis revealed that the deduced protein had a hydrophobicity score of - 0.37 without a transmembrane helix. Overall, this study revealed the PulA gene of B. licheniformis strain FAO.CP7 obtained from cocoa pods and its deduced protein show significant potential for enhancing starch bioprocessing. With further optimization, it could offer substantial benefits to starch-based biotechnological industries.
Collapse
Affiliation(s)
- Frank Abimbola Ogundolie
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Microbial and Molecular Biology Laboratory, Department of Biochemistry, Maharaja Sayajirao University of Baroda, Vadodara, India.
- Department of Biotechnology, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria.
| | - Tolulope Peter Saliu
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Computation and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Physiology, College of Medcine, University of Kentucky, Kentucky, USA
| | - Michael Obinna Okpara
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Computation and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology, and Bioinformatics, Rhodes University, Grahamstown, South Africa
| | | | - Folasade Mayowa Olajuyigbe
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Joshua Oluwafemi Ajele
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Gattupalli Naresh Kumar
- Microbial and Molecular Biology Laboratory, Department of Biochemistry, Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
2
|
Kayrav A, Mumcu H, Durmus N, Karaguler NG. Revealing the role of the X25 domains through the characterization of truncated variants of amylopullulanase enzyme from Thermoanaerobacter brockii brockii. Int J Biol Macromol 2024; 270:132404. [PMID: 38754672 DOI: 10.1016/j.ijbiomac.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.
Collapse
Affiliation(s)
- Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Naciye Durmus
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye.
| |
Collapse
|
3
|
Tang H, He Q, Li Y, Liu X. Sulfonated carboxymethyl debranched starch: Preparation, performance and application. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
6
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
7
|
Bi J, Chen S, Zhao X, Nie Y, Xu Y. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Appl Microbiol Biotechnol 2020; 104:7551-7562. [PMID: 32632476 DOI: 10.1007/s00253-020-10764-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Pullulanases are widely used in food, medicine, and other industries because they specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. In addition, high-temperature thermostable pullulanase has multiple advantages, including decreasing saccharification solution viscosity accompanied with enhanced mass transfer and reducing microbial contamination in starch hydrolysis. However, thermophilic pullulanase availability remains limited. Additionally, most do not meet starch-manufacturing requirements due to weak thermostability. Here, we developed a computation-aided strategy to engineer the thermophilic pullulanase from Bacillus thermoleovorans. First, three computational design predictors (FoldX, I-Mutant 3.0, and dDFIRE) were combined to predict stability changes introduced by mutations. After excluding conserved and catalytic sites, 17 mutants were identified. After further experimental verification, we confirmed six positive mutants. Among them, the G692M mutant had the highest thermostability improvement, with 3.8 °C increased Tm and 2.1-fold longer half-life than the wild type at 70 °C. We then characterized the mechanism underlying increased thermostability, such as rigidity enhancement, closer conformation, and strengthened motion correlation using root mean square fluctuation (RMSF), principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. KEY POINTS: • A computation-aided strategy was developed to engineer pullulanase thermostability. • Seventeen mutants were identified by combining three computational design predictors. • The G692M mutant was obtained with increased Tmand half-life at 70 °C.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Shuhui Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghan Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
11
|
Arabacı N, Arıkan B. An amylopullulanase (ApuNP1) from Geobacillus thermoleovorans NP1: biochemical characterization and its potential industrial applications. Prep Biochem Biotechnol 2019; 49:127-135. [PMID: 30620883 DOI: 10.1080/10826068.2018.1550655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An amylopullulanase was produced by Geobacillus thermoleovorans NP1. The optimum enzyme production occurred at 45°C and pH 7.0 (12 hr). NP1 amylopullulanase (ApuNP1) exhibited the maximal activity at 50°C and pH 6.0 and was stable between 30-50°C, and pH 3.0-12.0 for 24 hr. The enzyme showed two bands with molecular weights of 112 and 107 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The amylopullulanase retained 100% of its activity in the presence of 10 mM of Ca2+, Ba2+, Zn2+, Mg2+, Cu2+, EDTA, and PMSF. While the enzyme showed resistance to 5% of TritonX-100, Tween 20, and Tween 80, the activity was inhibited by 5% β-mercaptoethanol and H2O2. While the hydrolysis products of pullulan were maltose, maltotriose, and maltodextrin, the starch was hydrolyzed to maltose, maltotriose, and maltodextrin units. This shows that NP1 pullulanase is a type II pullulanase (amylopullulanase). After the liquefaction assay, 12% glucose content was measured with a refractometer in the presence of 20% starch. According to the wash performance tests, the mixture of ApuNP1 and 1% detergent removed almost all of the stains. This novel thermo-acidic amylopullulanase has a potency to be used in detergent, starch, food, baking, textile, and cosmetic industries.
Collapse
Affiliation(s)
- Nihan Arabacı
- a Department of Biology , Çukurova University , Adana , Turkey
| | - Burhan Arıkan
- a Department of Biology , Çukurova University , Adana , Turkey
| |
Collapse
|
12
|
Meng F, Zhu X, Nie T, Lu F, Bie X, Lu Y, Trouth F, Lu Z. Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination. Front Microbiol 2018; 9:2635. [PMID: 30450090 PMCID: PMC6224515 DOI: 10.3389/fmicb.2018.02635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Pullulanase plays an important role as a starch hydrolysis enzyme in the production of bio-fuels and animal feed, and in the food industry. Compared to the methods currently used for pullulanase production, synthesis by Bacillus subtilis would be safer and easier. However, the current yield of pullulanase from B. subtilis is low to meet industrial requirements. Therefore, it is necessary to improve the yield of pullulanase by B. subtilis. In this study, we mined 10 highly active promoters from B. subtilis based on transcriptome and bioinformatic data. Individual promoters and combinations of promoters were used to improve the yield of pullulanase in B. subtilis BS001. Four recombinant strains with new promoters (Phag, PtufA, PsodA, and PfusA) had higher enzyme activity than the control (PamyE). The strain containing PsodA+fusA (163 U/mL) and the strain containing PsodA+fusA+amyE (336 U/mL) had the highest activity among the analyzed dual- and triple-promoter construct stains in shake flask, which were 2.29 and 4.73 times higher than that of the strain with PamyE, respectively. Moreover, the activity of the strain containing PsodA+fusA+amyE showed a maximum activity of 1,555 U/mL, which was 21.9 times higher than that of the flask-grown PamyE strain in a 50-liter fermenter. Our work showed that these four strong promoters mined from transcriptome data and their combinations could reliably increase the yield of pullulanase in quantities suitable for industrial applications.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- Department of Food Science and Nutrition, University of Maryland, College Park, MD, United States
| | - Frances Trouth
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Li L, Dong F, Lin L, He D, Wei W, Wei D. N-Terminal Domain Truncation and Domain Insertion-Based Engineering of a Novel Thermostable Type I Pullulanase from Geobacillus thermocatenulatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10788-10798. [PMID: 30222339 DOI: 10.1021/acs.jafc.8b03331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thermostable type I pullulanase gene ( pul GT) from Geobacillus thermocatenulatus DSMZ730 was cloned. It has an open reading frame of 2154 bp encoding 718 amino acids. G. thermocatenulatus pullulanase (PulGT) was found to be optimally active at pH 6.5 and 70 °C. It exhibited stable activity in the pH range of 5.5-7.0. PulGT lacked three domains (CBM41 domain, X25 domain, and X45 domain) compared with the pullulanase from Bacillus acidopullulyticus ( 2WAN ). Different N-terminally domain truncated (730T) or spliced (730T-U1 and 730T-U2) mutants were constructed. Truncating the N-terminal 85 amino acids decreased the Km value and did not change its optimum pH, an advantageous biochemical property in some applications. Compared with 2WAN , PulGT can be used directly for maize starch saccharification without adjusting the pH, which reduces cost and improves efficiency.
Collapse
Affiliation(s)
- Lingmeng Li
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Fengying Dong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Lin Lin
- Shanghai University of Medicine and Health Sciences , Shanghai 200093 , People's Republic of China
- Research Laboratory for Functional Nanomaterial , National Engineering Research Center for Nanotechnology , Shanghai 200241 , People's Republic of China
| | - Dannong He
- Research Laboratory for Functional Nanomaterial , National Engineering Research Center for Nanotechnology , Shanghai 200241 , People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
14
|
Li L, Dong F, Lin L, He D, Chen J, Wei W, Wei D. Biochemical Characterization of a Novel Thermostable Type I Pullulanase Produced Recombinantly inBacillus subtilis. STARCH-STARKE 2018. [DOI: 10.1002/star.201700179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingmeng Li
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Fengying Dong
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Lin Lin
- Shanghai University of Medicine and Health Sciences; Shanghai 200093 People's Republic of China
| | - Dannong He
- Research Laboratory for Functional Nanomaterial; National Engineering Research Center for Nanotechnology; Shanghai 200241 People's Republic of China
| | - Jingwen Chen
- Department of Pathology; Microbiology and Immunology; School of medicine; University of South Carolina; 6311 Garners Ferry Rd Columbia SC 29209 USA
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering; Newworld Institute of Biotechnology; East China University of Science and Technology; Shanghai 200237 People's Republic of China
| |
Collapse
|
15
|
Optimization of the production of an extracellular and thermostable amylolytic enzyme by Thermus thermophilus HB8 and basic characterization. Extremophiles 2017; 22:189-202. [PMID: 29260387 DOI: 10.1007/s00792-017-0987-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The objective of this study was to determine the potential of Thermus thermophilus HB8 for accumulating a high level of extracellular, thermostable amylolytic enzyme. Initial production tests indicated clearly that only very low levels of amylolytic activity could be detected, solely from cells after extraction using the mild, non-ionic detergent Triton X-100. A sequential optimization strategy, based on statistical designs, was used to enhance greatly the production of extracellular amylolytic activity to achieve industrially attractive enzyme titers. Focus was placed on the optimal level of initial biomass concentration, culture medium composition and temperature for maximizing extracellular amylolytic enzyme accumulation. Empirical models were then developed describing the effects of the experimental parameters and their interactions on extracellular amylolytic enzyme production. Following such efforts, extracellular amylolytic enzyme accumulation was increased more than 70-fold, with enzyme titers in the 76 U/mL range. The crude extracellular enzyme was thereafter partially characterized. The optimal temperature and pH values were found to be 80 °C and 9.0, respectively. 100% of the initial enzyme activity could be recovered after incubation for 24 h at 80 °C, therefore, proving the very high thermostability of the enzyme preparation.
Collapse
|
16
|
Li T, Ding Y, Zhang J, Jiao G, Sun L, Liu Z, Qiu L. Improving the expression of recombinant pullulanase by increasing mRNA stability in Escherichia coli. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from Corallococcus sp. strain EGB. Protein Expr Purif 2017; 129:122-127. [DOI: 10.1016/j.pep.2015.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/21/2022]
|
18
|
Kuchtová A, Janeček Š. Domain evolution in enzymes of the neopullulanase subfamily. Microbiology (Reading) 2016; 162:2099-2115. [DOI: 10.1099/mic.0.000390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrea Kuchtová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| |
Collapse
|
19
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
20
|
Nisha M, Satyanarayana T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol 2016; 100:5661-79. [DOI: 10.1007/s00253-016-7572-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
|
21
|
Liu J, Liu Y, Yan F, Jiang Z, Yang S, Yan Q. Gene cloning, functional expression and characterisation of a novel type I pullulanase from Paenibacillus barengoltzii and its application in resistant starch production. Protein Expr Purif 2016; 121:22-30. [DOI: 10.1016/j.pep.2015.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
22
|
Zou C, Duan X, Wu J. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. ACTA ACUST UNITED AC 2016; 43:495-504. [DOI: 10.1007/s10295-015-1719-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 02/02/2023]
Abstract
Abstract
In this study, the pullulanase gene from Bacillus deramificans was efficiently expressed in Brevibacillus choshinensis. The optimal medium for protein expression was determined through a combination of single-factor experiments and response surface methodology. The initial pH of the medium and the culture temperature were optimized. The pullulanase yield increased 10.8-fold through medium and condition optimization at the shake-flask level. From the results of these experiments, the dissolved oxygen level was optimized in a 3-L fermentor. Under these optimized conditions, the pullulanase activity and the specific pullulanase productivity reached 1005.8 U/mL and 110.5 × 103 U/g dry cell weight, respectively, with negligible intracellular expression. The Brevibacillus choshinensis expression system has proven to be valuable for the extracellular production of pullulanase.
Collapse
Affiliation(s)
- Chun Zou
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Xuguo Duan
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| | - Jing Wu
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
- grid.258151.a 0000000107081323 School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University 1800 Lihu Avenue 214122 Wuxi China
| |
Collapse
|
23
|
Characterization of a pH and detergent-tolerant, cold-adapted type I pullulanase from Exiguobacterium sp. SH3. Extremophiles 2015; 19:1145-55. [DOI: 10.1007/s00792-015-0786-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/30/2015] [Indexed: 12/13/2022]
|
24
|
Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G. Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 2015; 25:113-9. [PMID: 26066287 DOI: 10.1016/j.mib.2015.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 01/17/2023]
Abstract
Industrial processes often take place under harsh conditions that are hostile to microorganisms and their biocatalysts. Microorganisms surviving at temperatures above 60°C represent a chest of biotechnological treasures for high-temperature bioprocesses by producing a large portfolio of biocatalysts (thermozymes). Due to the unique requirements to cultivate thermophilic (60-80°C) and hyperthermophilic (80-110°C) Bacteria and Archaea, less than 5% are cultivable in the laboratory. Therefore, other approaches including sequence-based screenings and metagenomics have been successful in providing novel thermozymes. In particular, polysaccharide-degrading enzymes (amylolytic enzymes, hemicellulases, cellulases, pectinases and chitinases), lipolytic enzymes and proteases from thermophiles have attracted interest due to their potential for versatile applications in pharmaceutical, chemical, food, textile, paper, leather and feed industries as well as in biorefineries.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Christian Schäfers
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Saskia Blank
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Carola Schröder
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany.
| |
Collapse
|