Lalefar NR, Witkowski A, Simonsen JB, Ryan RO. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells.
J Nanobiotechnology 2016;
14:66. [PMID:
27553039 PMCID:
PMC4995738 DOI:
10.1186/s12951-016-0218-5]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND
Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palmitoleoyl moiety in the N-terminal domain.
RESULTS
By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co-elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin(-) Sca-1(+) c-Kit(+) cells. Surprisingly, ND lacking Wnt3a contributed to Lin(-) Sca-1(+) c-Kit(+) cell expansion, an effect that was not mediated through β-catenin.
CONCLUSIONS
The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.
Collapse