1
|
Panhwer SN, Gadahi JA, Luo Q, Huang C, Liu W, Lanlan J, Chen Z. The anthelmintic potential of Bacillus thuringiensis to counter the Anthelmintic resistance against Haemonchus contortus. Exp Parasitol 2023; 250:108533. [PMID: 37072106 DOI: 10.1016/j.exppara.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Haemonchus contortus (H. contortus) has developed resistance to nearly all available anthelmintic medications. Hence, alternative strategies are required to counter anthelmintic resistance. The present study investigated the anthelmintic potential of Bacillus thuringiensis (B. thuringiensis) against H. contortus. Bacterialspp were identified by conventional methods and confirmed by PCR; In addition, PCR amplification of the bacterial 16S rRNA gene detected B. thuringiensis at 750 base pairs (bps). The amplified products were sequenced, and the sequence data were confirmed using the Basic Local Alignment Tool (BLAST), which showed a significant alignment (97.98%) with B. thuringiensis and B. cereus. B. thuringiensis were selected to isolate purified crystal proteins (toxins), The protein profile confirmed by SDS-PAGE showed three prominent bands at 70, 36, and 15 kDa. In addition, the larval development of H. contortus was examined in vitro using two different treatments. Purified crystal protein diluted in 10 mM NaCl at a concentration of 2mg/ml significantly reduced (P < 0.001) larval development by 75.10% compared to 1 × 108 CFU/ml spore-crystal suspension reduced (43.97%). The findings of in vitro experiments indicated that purified crystal protein was more toxic to the H. contortus larva than the spore-crystal suspension and control group. Moreover, To test the antinematodal effects of B. thuringiensis toxins in vivo, we chose 12 male goats (6 months old) and reared these animals in parasite-free conditions. We performed Fecal egg count reduction tests (FECRT) on samples collected before and after treatment at various times denotes 48 hours post-treatment with Purified crystal proteins was significantly decreased (842 ± 19.07) EPG compared to 24 (2560 ± 233.66) and 12 hours (4020 ± 165.22). Similarly, after 48 hours of treatment, the FECRT of the Spores-crystal mix was reduced (2920 ± 177.20) EPG followed by 24- and 12-hour denotes (4500 ± 137.84) and (4760 ± 112.24), respectively. Results of the above experiment suggested that purified crystal proteins have more anthelmintic potential in vivo. Current findings determine that B. thuringiensis toxin against H. contortus could be used in small ruminants to counter anthelmintic resistance. This study also suggested that future research structured on these proteins' pharmacokinetics and mode of action.
Collapse
Affiliation(s)
- Sana Noor Panhwer
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China
| | - Javaid Ali Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan.
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China
| | - Jia Lanlan
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang Y, Jiang N, Wang B, Tao H, Zhang X, Guan Q, Liu C. Integrated Transcriptomic and Proteomic Analyses Reveal the Role of NprR in Bacillus anthracis Extracellular Protease Expression Regulation and Oxidative Stress Responses. Front Microbiol 2020; 11:590851. [PMID: 33362738 PMCID: PMC7756075 DOI: 10.3389/fmicb.2020.590851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
NprR is a protein of Bacillus anthracis that exhibits moonlighting functions as either a phosphatase or a neutral protease regulator that belongs to the RNPP family. We previously observed that the extracellular protease activity of an nprR deletion mutant significantly decreased within in vitro cultures. To identify the genes within the regulatory network of nprR that contribute to its protease activity, integrated transcriptomic and proteomic analyses were conducted here by comparing the nprR deletion mutant and parent strains. A total of 366 differentially expressed genes (DEGs) between the strains were observed via RNA-seq analysis. In addition, label-free LC-MS/MS analysis revealed 503 differentially expressed proteins (DEPs) within the intracellular protein fraction and 213 extracellular DEPs with significant expressional differences between the strains. The majority of DEGs and DEPs were involved in environmental information processing and metabolism. Integrated transcriptomic and proteomic analyses indicated that oxidation-reduction-related GO terms for intracellular DEPs and endopeptidase-related GO terms for extracellular DEPs were significantly enriched in the mutant strain. Notably, many genes involved in protease activity were largely downregulated in the nprR deletion mutant cultures. Moreover, western blot analysis revealed that the major extracellular neutral protease Npr599 was barely expressed in the nprR deletion mutant strain. The mutant also exhibited impaired degradation of protective antigen, which is a major B. anthracis toxin component, thereby resulting in higher protein yields. Concomitantly, another global transcriptional regulator, SpxA1, was also dramatically downregulated in the nprR deletion mutant, resulting in higher sensitivity to oxidative and disulfide stress. These data consequently indicate that NprR is a transcriptional regulator that controls genes whose products function as extracellular proteases and also is involved in oxidative stress responses. This study thus contributes to a more comprehensive understanding of the biological function of NprR, and especially in the middle growth stages of B. anthracis.
Collapse
Affiliation(s)
- Yanchun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing, China
| | - Bowen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Haoxia Tao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qing Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunjie Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Cho SJ. Primary structure and characterization of a protease from Bacillus amyloliquefaciens isolated from meju, a traditional Korean soybean fermentation starter. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Perez-Pascual D, Monnet V, Gardan R. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators. Front Microbiol 2016; 7:706. [PMID: 27242728 PMCID: PMC4873490 DOI: 10.3389/fmicb.2016.00706] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022] Open
Abstract
Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell–cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell–cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host–microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.
Collapse
Affiliation(s)
- David Perez-Pascual
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas France
| | - Véronique Monnet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas France
| | - Rozenn Gardan
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas France
| |
Collapse
|