1
|
Meyer T, Stockfleth E. Treatment and Prevention of HPV-Associated Skin Tumors by HPV Vaccination. Vaccines (Basel) 2024; 12:1439. [PMID: 39772099 PMCID: PMC11680430 DOI: 10.3390/vaccines12121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
HPV-associated dermatological diseases include benign lesions like cutaneous warts and external genital warts. In addition, HPV infection is associated with the development of epithelial skin cancers, in particular cutaneous squamous cell carcinoma (cSCC). In contrast to anogenital and oropharyngeal cancers caused by mucosal HPV types of genus alpha papillomavirus, cSCC-associated HPV types belong to the genus beta papillomavirus. Currently available HPV vaccines that target mucosal HPV types associated with anogenital cancer and genital warts are type-specific and provide no cross-protection against beta HPV. When implementing vaccination to beta HPV to prevent skin tumors, it must be considered that acquisition of these HPV types occurs early in childhood and that the risk for cSCC increases with growing age and decreasing immune surveillance. Thus, individuals considered for beta HPV vaccination usually have pre-existing infection and are largely immunocompromised. On the other hand, worldwide increasing incidence rates of epithelial skin cancer reflect an urgent need for skin cancer prevention measures. Based on the pathogenic involvement of beta HPV, vaccination may represent a promising prevention strategy. Indeed, various procedures of prophylactic and therapeutic vaccination have been developed, and some of them have shown efficiency in animal models. Thus far, however, none of these vaccine candidates has been approved for application in humans.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany;
| | | |
Collapse
|
2
|
Cavazzini D, Spagnoli G, Mariz FC, Reggiani F, Maggi S, Franceschi V, Donofrio G, Müller M, Bolchi A, Ottonello S. Enhanced immunogenicity of a positively supercharged archaeon thioredoxin scaffold as a cell-penetrating antigen carrier for peptide vaccines. Front Immunol 2022; 13:958123. [PMID: 36032169 PMCID: PMC9405434 DOI: 10.3389/fimmu.2022.958123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polycationic resurfaced proteins hold great promise as cell-penetrating bioreagents but their use as carriers for the intracellular delivery of peptide immuno-epitopes has not thus far been explored. Here, we report on the construction and functional characterization of a positively supercharged derivative of Pyrococcus furiosus thioredoxin (PfTrx), a thermally hyperstable protein we have previously validated as a peptide epitope display and immunogenicity enhancing scaffold. Genetic conversion of 13 selected amino acids to lysine residues conferred to PfTrx a net charge of +21 (starting from the -1 charge of the wild-type protein), along with the ability to bind nucleic acids. In its unfused form, +21 PfTrx was readily internalized by HeLa cells and displayed a predominantly cytosolic localization. A different intracellular distribution was observed for a +21 PfTrx-eGFP fusion protein, which although still capable of cell penetration was predominantly localized within endosomes. A mixed cytosolic/endosomal partitioning was observed for a +21 PfTrx derivative harboring three tandemly repeated copies of a previously validated HPV16-L2 (aa 20-38) B-cell epitope grafted to the display site of thioredoxin. Compared to its wild-type counterpart, the positively supercharged antigen induced a faster immune response and displayed an overall superior immunogenicity, including a substantial degree of self-adjuvancy. Altogether, the present data point to +21 PfTrx as a promising novel carrier for intracellular antigen delivery and the construction of potentiated recombinant subunit vaccines.
Collapse
Affiliation(s)
- Davide Cavazzini
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Filipe Colaco Mariz
- German Cancer Research Center (DKFZ), Tumorvirus-specific Vaccination Strategies (F035), Heidelberg, Germany
| | - Filippo Reggiani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Maggi
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Tumorvirus-specific Vaccination Strategies (F035), Heidelberg, Germany
- *Correspondence: Martin Müller, ; Angelo Bolchi,
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
- *Correspondence: Martin Müller, ; Angelo Bolchi,
| | - Simone Ottonello
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Rossi I, Spagnoli G, Buttini F, Sonvico F, Stellari F, Cavazzini D, Chen Q, Müller M, Bolchi A, Ottonello S, Bettini R. A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant. J Control Release 2021; 340:209-220. [PMID: 34740725 DOI: 10.1016/j.jconrel.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.
Collapse
Affiliation(s)
- Irene Rossi
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Fabio Stellari
- Chiesi Farmaceutici SpA, Largo Belloli 11a, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Quigxin Chen
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Martin Müller
- German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| | - Ruggero Bettini
- Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze Parma, Italy; Interdepartmental Center Biopharmanet-tec, University of Parma, Parco Area delle Scienze Parma, Italy.
| |
Collapse
|
4
|
Yang F, Mariz FC, Zhao X, Spagnoli G, Ottonello S, Müller M. Broad Neutralization Responses Against Oncogenic Human Papillomaviruses Induced by a Minor Capsid L2 Polytope Genetically Incorporated Into Bacterial Ferritin Nanoparticles. Front Immunol 2020; 11:606569. [PMID: 33343580 PMCID: PMC7746619 DOI: 10.3389/fimmu.2020.606569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer remains a global health burden despite the introduction of highly effective vaccines for the prophylaxis of causative human papillomavirus infection (HPV). Current efforts to eradicate cervical cancer focus on the development of broadly protective, cost-effective approaches. HPV minor capsid protein L2 is being recognized as a promising alternative to the major capsid protein L1 because of its ability to induce responses against a wider range of different HPV types. However, a major limitation of L2 as a source of cross-neutralizing epitopes is its lower immunogenicity compared to L1 when assembled into VLPs. Various approaches have been proposed to overcome this limitation, we developed and tested ferritin-based bio-nanoparticles displaying tandemly repeated L2 epitopes from eight different HPV types grafted onto the surface of Pyrococcus furiosus thioredoxin (Pf Trx). Genetic fusion of the Pf Trx-L2(8x) module to P. furiosus ferritin (Pf Fe) did not interfere with ferritin self-assembly into an octahedral structure composed by 24 protomers. In guinea pigs and mice, the ferritin super-scaffolded, L2 antigen induced a broadly neutralizing antibody response covering 14 oncogenic and two non-oncogenic HPV types. Immune-responsiveness lasted for at least one year and the resulting antibodies also conferred protection in a cervico-vaginal mouse model of HPV infection. Given the broad organism distribution of thioredoxin and ferritin, we also verified the lack of cross-reactivity of the antibodies elicited against the scaffolds with human thioredoxin or ferritin. Altogether, the results of this study point to P. furiosus ferritin nanoparticles as a robust platform for the construction of peptide-epitope-based HPV vaccines.
Collapse
Affiliation(s)
- Fan Yang
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Filipe C. Mariz
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Xueer Zhao
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Gloria Spagnoli
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Research Group Tumorvirus-Specific Vaccination Strategies, Research Program Infection Inflammation & Cancer, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
6
|
Zhan N, Wang T, Zhang L, Shan A. A eukaryotic expression strategy for producing the novel antimicrobial peptide PRW4. Braz J Microbiol 2020; 51:999-1008. [PMID: 32415637 DOI: 10.1007/s42770-020-00291-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial peptide PMAP-36 is a cationic peptide derived from porcine myeloid. The N-terminally paired lysine of PMAP-36 was substituted with tryptophan, and the C-terminal hydrophobic tail was deleted, thereby obtaining the antimicrobial peptide PRW4. PRW4 is a α-helical antimicrobial peptide with broad-spectrum antimicrobial activity. In this study, PRW4 was fused to the 6× His-Trx, and the fusion protein was successfully expressed in Pichia pastoris GS115 from the vector pPICZαA. The maximal induction of recombinant protein occurred in the presence of 1% methanol after 96 h at pH 6.0. After purification by a Ni-NTA resin column and digestion by enterokinase protease, 15 mg of recombinant PRW4 with a purity of 90% was obtained from 1 L of fermentation culture. The results indicated that recombinant PRW4 had similar antimicrobial activity as synthetic PRW4 against bacteria such as Escherichia coli ATCC 25922, Escherichia coli UB 1005, Salmonella typhimurium C7731, Salmonella typhimurium 7913, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis ATCC 12228, and Streptococcus faecalis ATCC 29212. We have successfully expressed PRW4 in P. pastoris, and this work provides a reference for the production of modified antimicrobial peptides in P. pastoris.
Collapse
Affiliation(s)
- Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Tianyu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
7
|
Tian L, Zhang D, Su P, Wei Y, Wang Z, Wang PX, Dai CJ, Gong GL. Design, recombinant expression, and antibacterial activity of a novel hybrid magainin-thanatin antimicrobial peptide. Prep Biochem Biotechnol 2019; 49:427-434. [PMID: 30861356 DOI: 10.1080/10826068.2018.1476875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides are small molecule polypeptides with biological activity, which can avoid the drug resistance. Magainin and thanatin are antimicrobial peptides with a broad spectrum of inhibitory microbes, and the core sequence of magainin is linked to a core sequence of thanatin. Here, the hybrid magainin-thanatin (MT) antimicrobial peptide was designed through bioinformatics analysis. The recombinant MT antimicrobial peptide was successfully expressed and purified in Escherichia coli BL21 (DE3). The molecular weight of the hybrid MT antimicrobial peptide was about 3.35 kDa. Moreover, the target protein indeed has an inhibitory effect on Staphylococcus aureus, E. coli DH5α, and Bacillus subtilis, with the minimum inhibitory concentrations 16.5, 20, and 9 μM, respectively. The rational designed hybrid MT antimicrobial peptide will hopefully provide large-scale fermentable antimicrobial peptides in the industrial production in the future.
Collapse
Affiliation(s)
- Lu Tian
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Di Zhang
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Peng Su
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Yuan Wei
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Zhongzhong Wang
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Pan Xue Wang
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Chun Ji Dai
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| | - Guo Li Gong
- a School of Food and Bioengineering , Shaanxi University of Science & Technology , Xi'an , China
| |
Collapse
|
8
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles. Sci Rep 2017; 7:18000. [PMID: 29269879 PMCID: PMC5740060 DOI: 10.1038/s41598-017-18177-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Vaccines targeting the human papillomavirus (HPV) minor capsid protein L2 are emerging as chemico-physically robust and broadly protective alternatives to the current HPV (L1-VLP) vaccines. We have previously developed a trivalent L2 vaccine prototype exploiting Pyrococcus furiosus thioredoxin (PfTrx) as a thermostable scaffold for the separate presentation of three distinct HPV L2(20–38) epitopes. With the aim of achieving a highly immunogenic, yet simpler and more GMP-production affordable formulation, we report here on a novel thermostable nanoparticle vaccine relying on genetic fusion of PfTrx-L2 with the heptamerizing coiled-coil polypeptide OVX313. A prototype HPV16 monoepitope version of this nanoparticle vaccine (PfTrx-L2-OVX313; median radius: 8.6 ± 1.0 nm) proved to be approximately 10-fold more immunogenic and with a strikingly enhanced cross-neutralization capacity compared to its monomeric counterpart. Vaccine-induced (cross-)neutralizing responses were further potentiated in a multiepitope derivative displaying eight different L2(20–38) epitopes, which elicited neutralizing antibodies against 10 different HPVs including three viral types not represented in the vaccine. Considering the prospective safety of the PfTrx scaffold and of the OVX313 heptamerization module, PfTrx-OVX313 nanoparticles lend themselves as robust L2-based immunogens with a high translational potential as a 3rd generation HPV vaccine, but also as a novel and extremely versatile peptide-antigen presentation platform.
Collapse
|
10
|
A family of archaea-like carboxylesterases preferentially expressed in the symbiotic phase of the mychorrizal fungus Tuber melanosporum. Sci Rep 2017; 7:7628. [PMID: 28794466 PMCID: PMC5550427 DOI: 10.1038/s41598-017-08007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
An increasing number of esterases is being revealed by (meta) genomic sequencing projects, but few of them are functionally/structurally characterized, especially enzymes of fungal origin. Starting from a three-member gene family of secreted putative “lipases/esterases” preferentially expressed in the symbiotic phase of the mycorrhizal fungus Tuber melanosporum (“black truffle”), we show here that these enzymes (TmelEST1-3) are dimeric, heat-resistant carboxylesterases capable of hydrolyzing various short/medium chain p-nitrophenyl esters. TmelEST2 was the most active (kcat = 2302 s−1 for p-nitrophenyl-butyrate) and thermally stable (T50 = 68.3 °C), while TmelEST3 was the only one displaying some activity on tertiary alcohol esters. X-ray diffraction analysis of TmelEST2 revealed a classical α/β hydrolase-fold structure, with a network of dimer-stabilizing intermolecular interactions typical of archaea esterases. The predicted structures of TmelEST1 and 3 are overall quite similar to that of TmelEST2 but with some important differences. Most notably, the much smaller volume of the substrate-binding pocket and the more acidic electrostatic surface profile of TmelEST1. This was also the only TmelEST capable of hydrolyzing feruloyl-esters, suggestinng a possible role in root cell-wall deconstruction during symbiosis establishment. In addition to their potential biotechnological interest, TmelESTs raise important questions regarding the evolutionary recruitment of archaea-like enzymes into mesophilic subterranean fungi such as truffles.
Collapse
|