1
|
Rasool S, Shomali T, Truong L, Croteau N, Veyron S, Bustillos BA, Springer W, Fiesel FC, Trempe JF. Identification and structural characterization of small molecule inhibitors of PINK1. Sci Rep 2024; 14:7739. [PMID: 38565869 PMCID: PMC10987619 DOI: 10.1038/s41598-024-58285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.
Collapse
Affiliation(s)
- Shafqat Rasool
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Tara Shomali
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Luc Truong
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
2
|
Abdel Aziz MH, Fan Y, Liu L, Moasser MM, Fu H, Jura N, Arkin MR. Expression and purification of active human kinases using Pichia pastoris as a general-purpose host. Protein Expr Purif 2021; 179:105780. [PMID: 33115654 PMCID: PMC11655031 DOI: 10.1016/j.pep.2020.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/14/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The heterologous expression of human kinases in good purity and in a monomeric, soluble and active form can be challenging. Most of the reported successful attempts are carried out in insect cells as a host. The use of E. coli for expression is limited to a few kinases and usually is facilitated by large solubility tags that can limit biophysical studies and affect protein-protein interactions. In this report, we evaluate the methylotrophic yeast Pichia pastoris (P. pastoris) as a general-purpose host for expression of human kinases. METHODS Six diverse kinases were chosen due to their therapeutic importance in human cancers. Tested proteins include serine/threonine kinases cyclin-dependent kinases 4 and 6 (CDK4 and 6) and aurora kinase A (AurKA), receptor tyrosine kinase erbB-2 (HER2), and dual specificity kinase mitogen-activated protein kinase kinase 3 (MKK3b). Noting that positively charged kinases expressed with higher yield, we sought to improve expression of two challenging targets, CDK6 and HER2, by fusing the highly basic, N-terminal domain of the secreted tyrosine-protein kinase VLK. The standard expression procedure for P. pastoris was adopted, followed by purification using affinity chromatography. Purity and activity of the proteins were confirmed and compared to published values. RESULTS Some kinases were purified with good yield and purity and with comparable activity to commercially available versions. Addition of the VLK domain improved expression and decreased aggregation of CDK6 and HER2.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| | - Yao Fan
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Lijun Liu
- Cardiovascular Research Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Mark M Moasser
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Natalia Jura
- Cardiovascular Research Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
4
|
Rasool S, Trempe JF. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Crit Rev Biochem Mol Biol 2018; 53:515-534. [PMID: 30238821 DOI: 10.1080/10409238.2018.1491525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mutations in PINK1 cause early-onset recessive Parkinson's disease. This gene encodes a protein kinase implicated in mitochondrial quality control via ubiquitin phosphorylation and activation of the E3 ubiquitin ligase Parkin. Here, we review and analyze functional features emerging from recent crystallographic, nuclear magnetic resonance (NMR) and mass spectrometry studies of PINK1. We compare the apo and ubiquitin-bound PINK1 structures and reveal an allosteric switch, regulated by autophosphorylation, which modulates substrate recognition. We critically assess the conformational changes taking place in ubiquitin and the Parkin ubiquitin-like domain in relation to its binding to PINK1. Finally, we discuss the implications of these biophysical findings in our understanding of the role of PINK1 in mitochondrial function, and analyze the potential for structure-based drug design.
Collapse
Affiliation(s)
- Shafqat Rasool
- a Department of Biochemistry , McGill University , Montréal , Canada.,b Groupe de Recherche Axé sur la Structure des Protéines (GRASP) , Montréal , Canada
| | - Jean-François Trempe
- b Groupe de Recherche Axé sur la Structure des Protéines (GRASP) , Montréal , Canada.,c Department of Pharmacology & Therapeutics , McGill University , Montréal , Canada
| |
Collapse
|