1
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
2
|
Nguyen TKO, Ryu D, Nguyen MQ, Ta HKK, Vu TL, Choe H. Efficient production of human interleukin-3 from Escherichia coli using protein disulfide isomerase b'a' domain. Biotechnol J 2024; 19:e2300581. [PMID: 38719587 DOI: 10.1002/biot.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Human interleukin-3 (IL3) is a multifunctional cytokine essential for both clinical and biomedical research endeavors. However, its production in Escherichia coli has historically been challenging due to its aggregation into inclusion bodies, requiring intricate solubilization and refolding procedures. This study introduces an innovative approach employing two chaperone proteins, maltose binding protein (MBP) and protein disulfide isomerase b'a' domain (PDIb'a'), as N-terminal fusion tags. Histidine tag (H) was added at the beginning of each chaperone protein gene for easy purification. This fusion of chaperone proteins significantly improved IL3 solubility across various E. coli strains and temperature conditions, eliminating the need for laborious refolding procedures. Following expression optimization, H-PDIb'a'-IL3 was purified using two chromatographic methods, and the subsequent removal of the H-PDIb'a' tag yielded high-purity IL3. The identity of the purified protein was confirmed through liquid chromatography coupled with tandem mass spectrometry analysis. Biological activity assays using human erythroleukemia TF-1 cells revealed a unique two-step stimulation pattern for both purified IL3 and the H-PDIb'a'-IL3 fusion protein, underscoring the protein's functional integrity and revealing novel insights into its cellular interactions. This study advances the understanding of IL3 expression and activity while introducing novel considerations for protein fusion strategies.
Collapse
Affiliation(s)
- Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Ryu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minh Quan Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Huynh Kim Khanh Ta
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Tarabarova A, Lopukhov A, Fedorov AN, Yurkova MS. Novel His-tag Variants for Insertion Inside Polypeptide Chain. ACS OMEGA 2024; 9:858-865. [PMID: 38222536 PMCID: PMC10785306 DOI: 10.1021/acsomega.3c06682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
His-tags are protein affinity tags ubiquitously used due to their convenience and effectiveness. However, in some individual cases, the attachment of His-tags to a protein's N- or C-termini resulted in impairment of the protein's structure or function, which led to attempts to include His-tags inside of polypeptide chains. In this work, we describe newly designed internal His-tags, where two triplets of histidine residues are separated by glycine residues to avoid steric hindrances and consequently minimize their impact on the protein structure. The applicability of these His-tags was tested with eGFP, a multifaceted reference protein, and GrAD207, a modified apical domain of GroEL chaperone, designed to stabilize in soluble form initially insoluble proteins. Both proteins are used as fusion partners for different purposes, and providing them with His-tags introduced into their polypeptide chains should conveniently broaden their functionality without involving the termini. We conclude that the insertable tags may be adjusted for the purification of proteins belonging to different structural classes.
Collapse
Affiliation(s)
- Anastasiia
G. Tarabarova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Anton Lopukhov
- Chemistry
Department, Lomonosov Moscow State University, GSP-1, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Alexey N. Fedorov
- FSI
Federal Research Centre Fundamentals of Biotechnology of the Russian
Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| | - Maria S. Yurkova
- A
N Bach Institute of Biochemistry of the Russian Academy of Sciences, Leninskii prosp 33/2, Moscow 119071, Russian Federation
| |
Collapse
|
4
|
Tumas S, Meldgaard TS, Vaaben TH, Suarez Hernandez S, Rasmussen AT, Vazquez-Uribe R, Hadrup SR, Sommer MOA. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci Rep 2023; 13:12506. [PMID: 37532747 PMCID: PMC10397246 DOI: 10.1038/s41598-023-39365-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
In this study we performed a step-wise optimization of biologically active IL-2 for delivery using E. coli Nissle 1917. Engineering of the strain was coupled with an in vitro cell assay to measure the biological activity of microbially produced IL-2 (mi-IL2). Next, we assessed the immune modulatory potential of mi-IL2 using a 3D tumor spheroid model demonstrating a strong effect on immune cell activation. Finally, we evaluated the anticancer properties of the engineered strain in a murine CT26 tumor model. The engineered strain was injected intravenously and selectively colonized tumors. The treatment was well-tolerated, and tumors of treated mice showed a modest reduction in tumor growth rate, as well as significantly elevated levels of IL-2 in the tumor. This work demonstrates a workflow for researchers interested in engineering E. coli Nissle for a new class of microbial therapy against cancer.
Collapse
Affiliation(s)
- Sarunas Tumas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
Rauniyar K, Akhondzadeh S, Gąciarz A, Künnapuu J, Jeltsch M. Bioactive VEGF-C from E. coli. Sci Rep 2022; 12:18157. [PMID: 36307539 PMCID: PMC9616921 DOI: 10.1038/s41598-022-22960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial growth factor-C (VEGF-C) stimulates lymphatic vessel growth in transgenic models, via viral gene delivery, and as a recombinant protein. Expressing eukaryotic proteins like VEGF-C in bacterial cells has limitations, as these cells lack specific posttranslational modifications and provisions for disulfide bond formation. However, given the cost and time savings associated with bacterial expression systems, there is considerable value in expressing VEGF-C using bacterial cells. We identified two approaches that result in biologically active Escherichia coli-derived VEGF-C. Expectedly, VEGF-C expressed from a truncated cDNA became bioactive after in vitro folding from inclusion bodies. Given that VEGF-C is one of the cysteine-richest growth factors in humans, it was unclear whether known methods to facilitate correct cysteine bond formation allow for the direct expression of bioactive VEGF-C in the cytoplasm. By fusing VEGF-C to maltose-binding protein and expressing these fusions in the redox-modified cytoplasm of the Origami (DE3) strain, we could recover biological activity for deletion mutants lacking the propeptides of VEGF-C. This is the first report of a bioactive VEGF growth factor obtained from E. coli cells circumventing in-vitro folding.
Collapse
Affiliation(s)
- Khushbu Rauniyar
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Soheila Akhondzadeh
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Anna Gąciarz
- grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Jaana Künnapuu
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Michael Jeltsch
- grid.7737.40000 0004 0410 2071Drug Research Program, Faculty of Pharmacy, Biocenter 2, University of Helsinki, P.O.B. 56 (Viikinkaari 5E), 00014 Helsinki, Finland ,grid.7737.40000 0004 0410 2071Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland ,grid.452042.50000 0004 0442 6391Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
6
|
Dagar VK, Babbal, Mohanty S, Khasa YP. Effect of N-glycosylation on secretion, stability, and biological activity of recombinant human interleukin-3 (hIL-3) in Pichia pastoris. 3 Biotech 2022; 12:221. [PMID: 35971333 PMCID: PMC9374863 DOI: 10.1007/s13205-022-03293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022] Open
Abstract
Human interleukin-3 (hIL-3) is a clinically important cytokine used to treat hematological malignancies, bone marrow transplantation, cytopenias, and immunological disorders. The cloning of hIL-3 gene was previously reported by our group, where its expression was optimized under methanol-inducible AOX1 promoter having N-terminal α mating factor signal sequence from Saccharomyces cerevisiae. This study investigated the role of glycosylation pattern on its molecular stability, secretion efficiency, and biological activity using the mutagenesis approach. The two N-linked glycosylation positions at N15th (Asn15) and N70th (Asn70) were sequentially mutated to generate three recombinant hIL-3 variants, i.e., N15A, N70A, and N15/70A. Asparagine at these positions was replaced with non-polar alanine amino acid (Ala, A). The alteration of N-linked glycosylation sites was disadvantageous to its efficient secretion in Pichia pastoris, where a 52.32%, 36.48%, 71.41% lower production was observed in N15A, N70A, and N15/70A mutants, respectively, as compared to native control. The fully glycosylated native hIL-3 protein showed higher thermal stability over its deglycosylated counterparts. The biological activity of native, N15A, N70A, and N15/70A hIL-3 protein was evaluated, where N15/70A mutant showed slightly higher proliferation efficacy than other combinations.
Collapse
Affiliation(s)
| | - Babbal
- University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
7
|
Mohanty S, Dabburu GR, Kumar M, Khasa YP. Heterologous expression of novel SUMO proteases from Schizosaccharomyces pombe in E. coli: Catalytic domain identification and optimization of product yields. Int J Biol Macromol 2022; 209:1001-1019. [PMID: 35447271 DOI: 10.1016/j.ijbiomac.2022.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are efficiently used to target the soluble expression of various difficult-to-express proteins in E. coli. However, its utilization in large scale protein production is restricted by the higher cost of Ulp, which is required to cleave SUMO fusion tag from protein-of-interest to generate an authentic N-terminus. This study identified and characterized two novel SUMO proteases i.e., Ulp1 and Ulp2 from Schizosaccharomyces pombe. Codon-optimized gene sequences were cloned and expressed in E. coli. The sequence and structure of SpUlp1 and SpUlp2 catalytic domains were deduced using bioinformatics tools. Protein-protein interaction studies predicted the higher affinity of SpUlp1 towards SUMO compared to its counterpart from Saccharomyces cerevisiae (ScUlp1). The catalytic domain of SpUlp1 was purified using Ni-NTA chromatography with 83.33% recovery yield. Moreover, In vitro activity data further confirmed the fast-acting nature of SpUlp1 catalytic domain, where a 90% cleavage of fusion proteins was obtained within 1 h of incubation, indicating novelty and commercial relevance of S. pombe Ulp1. Biophysical characterization showed 8.8% α-helices, 36.7% β-sheets in SpUlp1SD. From thermal CD and fluorescence data, SpUlp1SD Tm was found to be 45 °C. Further, bioprocess optimization using fed-batch cultivation resulted in 3.5 g/L of SpUlp1SD production with YP/X of 77.26 mg/g DCW and volumetric productivity of 205.88 mg/L/h.
Collapse
Affiliation(s)
- Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Ma Y, Huang K, Wu Y. In Vivo/In Vitro Properties of Novel Antioxidant Peptide from Pinctada fucata. J Microbiol Biotechnol 2021; 31:33-42. [PMID: 32807751 PMCID: PMC9705889 DOI: 10.4014/jmb.2006.06002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p < 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.
Collapse
Affiliation(s)
- Yongkai Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou 50300, P. R. China,School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Kehui Huang
- Guangzhou Maritime University, Guangzhou 510725, P.R. China
| | - Yanyan Wu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou 50300, P. R. China,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, P.R. China,Corresponding author Phone: ±86-20-34063583 Fax: +86-20-84451442 E-mail:
| |
Collapse
|
9
|
Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M, Cianférani S, Ferry G, Boutin JA. VHH characterization.Recombinant VHHs: Production, characterization and affinity. Anal Biochem 2019; 589:113491. [PMID: 31676284 DOI: 10.1016/j.ab.2019.113491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Among the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein. Because they differ slightly in global structure, they are good models to assess our body of analytical methodologies. The VHHs were expressed in several bacteria strains in order to identify and overcome the bottlenecks to obtain homogeneous preparations of this protein. A large panel of biophysical tools, ranging from spectroscopy to mass spectrometry, was here combined to assess VHH structural features and the impact of the disulfide bond. The routes are now ready to move to more complex VHHs raised against specific targets in numerous areas including oncology.
Collapse
Affiliation(s)
- Eric Chabrol
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Alexandre Nicolas
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Benjamin Fould
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Mathias Antoine
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Gilles Ferry
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.
| | - Jean A Boutin
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France; Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes Cedex, France.
| |
Collapse
|
10
|
Adivitiya, Babbal, Mohanty S, Dagar VK, Khasa YP. Development of a streptokinase expression platform using the native signal sequence of the protein with internal repeats 1 (PIR1) in P. pastoris: Gene dosage optimization and cell retention strategies. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Construction of Boolean logic gates based on dual-vector circuits of multiple gene regulatory elements. Mol Genet Genomics 2019; 294:277-286. [PMID: 30374564 DOI: 10.1007/s00438-018-1502-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Gene circuits are constructed to run complex logical operations for the precise regulation of biological metabolic processes. At present, the implementation of most genetic circuits is based on the regulatory mechanism of various circuit components, but we hope to realize complex logic gates through biological metabolic pathways of organisms. In this study, we matched the regulatory elements of different functional mechanisms to build a Boolean logic gate model by means of a dual-vector circuit. In Escherichia coli, we made 12 circuit logic gate modules and validated the functions of four of the logic gates, including "AND", "NAND", "OR" and "NOR" by the expression and analysis of a reporter gene. The inputs were converted into outputs by an intermediate product of the host metabolism. The results indicated that these logic gate circuits had the expected efficacy and regulatory characteristics. Our study provides new ideas for designing genetic circuits and precisely controlling metabolic pathways.
Collapse
|
12
|
Two-hundred-liter scale fermentation, purification of recombinant human fibroblast growth factor-21, and its anti-diabetic effects on ob/ob mice. Appl Microbiol Biotechnol 2018; 103:719-730. [PMID: 30415427 DOI: 10.1007/s00253-018-9470-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Fibroblast growth factor-21 (FGF-21) is a potential cytokine for type II diabetes mellitus. This study aimed to optimize recombinant human FGF-21 (rhFGF-21) production in Escherichia coli BL21 (DE3) employing high cell density fermentation at a 200-L scale and pilot-scale purification. FGF-21 was eventually expressed in E. coli BL21 (DE3) using human FGF-21 synthetic DNA sequence via the introduction of vector pET-3c; the product is used as seed strain during the fermentation of rhFGF-21. Fermentation of rhFGF-21 was performed in a 30-L and 200-L fermenters. rhFGF-21 was primarily expressed in the form of inclusion bodies after IPTG induction. At the 200-L scale, the bacterial production and expression levels of rhFGF-21 were 38.8 ± 0.6 g/L and 30.9 ± 0.7%, respectively. Additionally, the high purification (98%) of rhFGF-21 was tested with HPLC analysis and reducing & non-reducing SDS-PAGE analysis. The final yield of purified rhFGF-21 was 71.1 ± 13.9 mg/L. The activity of rhFGF-21 stock solution reached at 68.67 ± 8.74 IU/mg. Blood glucose controlling and insulin sensitization were improved with treatment of rhFGF-21 in type II diabetic ob/ob mice. Our results showed that the relatively stable and time-saving pilot-scale production process was successfully established, providing an efficient and cost-effective strategy for large-scale and industrial production of rhFGF-21.
Collapse
|
13
|
Bioprocess optimization for the overproduction of catalytic domain of ubiquitin-like protease 1 (Ulp1) from S. cerevisiae in E. coli fed-batch culture. Enzyme Microb Technol 2018; 120:98-109. [PMID: 30396406 DOI: 10.1016/j.enzmictec.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The exploitation of SUMO (small ubiquitin-related modifier) fusion technology at a large scale for the production of therapeutic proteins with an authentic N-terminus is majorly limited due to the higher cost of ScUlp1 protease. Therefore, the cost-effective production of Saccharomyces cerevisiae Ulp1 protease catalytic domain (402-621 aa) was targeted via its cloning under strong T7 promoter with and without histidine tag. The optimization of cultivation conditions at shake flask resulted in ScUlp1 expression of 195 mg/L in TB medium with a specific product yield of 98 mg/g DCW. The leaky expression of the ScUlp1 protease was controlled using the chemically defined minimal medium. The Ni-NTA affinity purification of ScUlp1 was done near homogeneity using different additives (0.1% Triton X-100, 0.01 mM DTT, 0.02 mM EDTA and 1% glycerol) where a product purity of ∼95% with a recovery yield of 80% was obtained. The specific activity of purified ScUlp1 was found to be 3.986 × 105 U/mg. The ScUlp1 protease successfully cleaved the SUMO tag even at 1:10,000 enzyme to substrate ratio with high efficacy and also showed a comparable catalytic efficiency as of commercial control. Moreover, the in vivo cleavage of SUMO tag via co-expression strategy also resulted in more than 80% cleavage of SUMO fusion protein. The optimization of high cell density cultivation strategies and maintenance of higher plasmid stability at bioreactor level resulted in the ScUlp1 production of 3.25 g/L with a specific product yield of 45.41 mg/g DCW when cells were induced at an OD600 of 132 (63.66 g/L DCW).
Collapse
|
14
|
Du Z, Li J. Expression, purification and molecular characterization of a novel transcription factor KcCBF3 from Kandelia candel. Protein Expr Purif 2018; 153:26-34. [PMID: 30118861 DOI: 10.1016/j.pep.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022]
Abstract
Kandelia candel, a major species of mangrove in the tropical and subtropical area, is susceptible to low temperature in winter. K. candel was introduced into Zhejiang Province (the northern margin of South China) several decades ago, and suffered from low temperature causing growth retardation, in server cases, even death. To explore the molecular mechanisms of cold acclimation in K. candel, a novel C-repeat binding factor gene KcCBF3 (Genbank accession no. KF111715) of 729 bp open reading frame (ORF) encoding a protein of 242 amino acid residues was isolated, expressed, purified and characterized. Multiple sequence alignment analysis revealed that KcCBF3 contained a highly conserved AP2/EREBP DNA-binding domain which consisting of 79 amino acid residues, as well as two CBF signature sequences. Phylogenetic analysis indicated that KcCBF3 belonged to the A-1 subgroup of DREB subfamily based on the classification of AP2/EREBP transcription factors in Arabidopsis. Semi-quantitative RT-PCR showed that KcCBF3 transcripts were highly accumulated in roots and leaves, and could be induced by low temperature. Electrophoresis mobility shift assay (EMSA) demonstrated KcCBF3 could bind to the core sequence (CCGAC) of cis-acting element C-repeat (CRT)/dehydration-responsive element (DRE) in vitro. These results implied that KcCBF3 might participate in the adaptation of K. candel to low-temperature stress by binding to CRT/DRE element.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Institute of Ecology, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Institute of Ecology, Taizhou University, Taizhou, Zhejiang, 318000, PR China.
| |
Collapse
|
15
|
Gao W, Yin J, Bao L, Wang Q, Hou S, Yue Y, Yao W, Gao X. Engineering Extracellular Expression Systems in Escherichia coli Based on Transcriptome Analysis and Cell Growth State. ACS Synth Biol 2018; 7:1291-1302. [PMID: 29668266 DOI: 10.1021/acssynbio.7b00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli extracellular expression systems have a number of advantages over other systems, such as lower pyrogen levels and a simple purification process. Various approaches, such as the generation of leaky mutants via chromosomal engineering, have been explored for this expression system. However, extracellular protein yields in leaky mutants are relatively low compared to that in intracellular expression systems and therefore need to be improved. In this work, we describe the construction, characterization, and mechanism of enhanced extracellular expression in Escherichia coli. On the basis of the localizations, functions, and transcription levels of cell envelope proteins, we systematically elucidated the effects of multiple gene deletions on cell growth and extracellular expression using modified CRISPR/Cas9-based genome editing and a FlAsH labeling assay. High extracellular yields of heterologous proteins of different sizes were obtained by screening multiple gene mutations. The enhancement of extracellular secretion was associated with the derepression of translation and translocation. This work utilized universal methods in the design of extracellular expression systems for genes not directly associated with protein synthesis that were used to generate strains with higher protein expression capability. We anticipate that extracellular expression systems may help to shed light on the poorly understood aspects of these secretion processes as well as to further assist in the construction of engineered prokaryotic cells for efficient extracellular production of heterologous proteins.
Collapse
Affiliation(s)
- Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Dagar VK, Khasa YP. Combined effect of gene dosage and process optimization strategies on high-level production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris fed-batch culture. Int J Biol Macromol 2018; 108:999-1009. [DOI: 10.1016/j.ijbiomac.2017.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
|
17
|
Mahalik S, Sharma AK, Jain P, Mukherjee KJ. Identifying genomic targets for protein over-expression by "omics" analysis of Quiescent Escherichia coli cultures. Microb Cell Fact 2017; 16:133. [PMID: 28754100 PMCID: PMC5534100 DOI: 10.1186/s12934-017-0744-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background A cellular stress response is triggered upon induction of recombinant protein expression which feedback inhibits both growth as well as protein synthesis. In order to separate these two effects, it was decided to study “quiescent cultures” which continue to be metabolically active and express recombinant proteins even after growth cessation. The idea was to identify and up-regulate genes which are responsible for protein synthesis in the absence of growth. This would ensure that, even if growth were adversely affected post induction, there would be no attendant reduction in the protein expression capability of the cells. This strategy allowed us to design host strains, which did not grow better post induction but had significantly higher levels of protein expression. Results A quiescent Escherichia coli culture, which is able to sustain recombinant protein expression in the absence of growth, was analyzed by transcriptomic and proteomic profiling. Many genes involved in carbon utilization, biosynthesis of building blocks and stress protection were found to be up-regulated in the quiescent phase. Analysis of the global regulators showed that fis, which tends to get down-regulated as the cells enter stationary phase, remained up-regulated throughout the non-growing quiescent phase. The downstream genes regulated by fis like carB, fadB, nrfA, narH and queA were also up-regulated in the quiescent phase which could be the reason behind the higher metabolic activity and protein expression ability of these non-growing cells. To test this hypothesis, we co-expressed fis in a control culture expressing recombinant l-asparaginase and observed a significantly higher buildup of l-asparaginase in the culture medium. Conclusions This work represents an important breakthrough in the design of a superior host platform where a gene not directly associated with protein synthesis was used to generate a phenotype having higher protein expression capability. Many alternative gene targets were also identified which may have beneficial effects on expression ability. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0744-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashish Kumar Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
18
|
Jin YB, Yang WT, Huang KY, Chen HL, Shonyela SM, Liu J, Liu Q, Feng B, Zhou Y, Zhi SL, Jiang YL, Wang JZ, Huang HB, Shi CW, Yang GL, Wang CF. Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies. Biosci Biotechnol Biochem 2017. [PMID: 28644752 DOI: 10.1080/09168451.2017.1340086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recombination activating gene 2 (RAG2) is necessary for immature B cell differentiation. Antibodies to human and rabbit RAG2 are currently commercially available, but antibodies to swine RAG remain unavailable to date. In this study, the swine RAG2 genes sequence was synthesized and then cloned into a pET-28a vector. The recombinant fusion protein was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Tobacco Etch Virus protease. The cleaved protein was purified by molecular-exclusion chromatography and named pRAG2. We used pRAG2 to immunize rabbits, collected the serum and purified rabbit anti-pRAG2 polyclonal antibodies. The rabbit anti-pRAG2 polyclonal antibodies were tested via immunofluorescence on eukaryotic cells overexpressing pRAG2 and also able to recognize pig natural RAG2 and human RAG2 protein in western blotting. These results indicated that the prepared rabbit anti-pRAG2 polyclonal antibodies may serve as a tool to detect immature B cell differentiation of swine.
Collapse
Affiliation(s)
- Yu-Bei Jin
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Wen-Tao Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Ke-Yan Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hong-Liang Chen
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Seria-Masole Shonyela
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jing Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Qiong Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Bo Feng
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - You Zhou
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Shu-Li Zhi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Yan-Long Jiang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jian-Zhong Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hai-Bin Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Wei Shi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Gui-Lian Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Feng Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| |
Collapse
|