1
|
Wang X, Li Y, Zhang L, Wang B. Comprehensive identification of LEA protein family genes and functional analysis of MdLEA60 involved in abiotic stress responses in apple (Malus domestica). Int J Biol Macromol 2024; 283:137641. [PMID: 39547624 DOI: 10.1016/j.ijbiomac.2024.137641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are important proteins that exists widely in many plants and contribute to physiological processes of plant stress resistance. Despite LEA proteins being identified in many plants, none have been reported in apple (Malus domestica) until this study. In this study, a total of 87 MdLEA proteins were identified in apple, and a comprehensive analysis was conducted to elucidate the functions of MdLEA proteins in response to abiotic stress. Results showed that they were classified into 7 groups and distributed on 16 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of MdLEA genes. The MdLEA promoters were enriched with elements associated with various stress responses. Through transcriptome and qRT-PCR analysis, several MdLEA genes related to drought/salinity/cold were excavated, and MdLEA60 was selected for transgenic validation. The ectopic expression of MdLEA60 enhanced osmotic and extreme temperature tolerance in both prokaryotic and eukaryotic cells, providing stress resistance support via antioxidant protection. Overall, the comprehensive analyses and identification not only establish a basis for future investigation into the functional mechanism of MdLEA proteins but also provide potential candidate genes for apple resistance breeding optimization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yuwei Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi 712100, China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
2
|
Chen G, Li R, Shen X. ApSerpin-ZX from Agapanthus praecox, is a potential cryoprotective agent to plant cryopreservation. Cryobiology 2020; 98:103-111. [PMID: 33316226 DOI: 10.1016/j.cryobiol.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Cryopreservation-induced cell death is regarded as an important problem faced by cryobiologists. Oxidative stress and programmed cell death are detrimental to cell survival. Serine protease inhibitors (serpins) inhibit pro-cell-death proteases and play a pro-survival role in excessive cell death induced by abiotic stress. In this study, ApSerpin-ZX was isolated from Agapanthus praecox and characterized as a protective protein in plant cryopreservation. The mRNA level of ApSerpin-ZX was elevated under abiotic stress, such as salt, osmosis, oxidative, cold, and cryoinjury. The purified recombinant protein expressed in E. coli was added to the plant vitrification solution and used for A. praecox embryogenic callus cryopreservation. The concentration of 0.6-4.8 mg∙L-1 of ApSerpin-ZX protein was beneficial to the survival of cryopreserved embryogenic callus of A. praecox. The most effective concentration was 1.2 mg∙L-1, which elevated the survival by 37.15%. Subsequently, the cryopreservation procedure with 1.2 mg∙L-1 of ApSerpin-ZX protein was regarded as the treated group, compared to standard procedure, to determine the physiological mechanism of ApSerpin-ZX protein on cryopreserved cell. The MDA and H2O2 contents were significantly decreased in the treated group, along with reduced OH· generation activity in the recovery stage. After the addition of ApSerpin-ZX, the POD and CAT activities keep increased, while SOD activity increased only after dehydration. Besides, the caspase-1-like and caspase-3-like activities were lower than the standard procedure. This study indicated that ApSerpin-ZX was a potential cryoprotective agent that alleviated oxidative stress and cell death induced by cryopreservation.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ruilian Li
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Shen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Chen G, Xu P, Pan J, Li Y, Zhou J, Kuang H, Lian H. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110578. [PMID: 32771176 DOI: 10.1016/j.plantsci.2020.110578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
FvMYB10 protein has been proved to be a transcriptional switch for anthocyanin biosynthesis in strawberry. A single nucleotide mutation in R2 domain of FvMYB10, named as FvmMYB10, is found to be responsible for the white color in strawberry variety 'Yellow Wonder'. However, the mechanism of FvmMYB10 suppresses anthocyanin biosynthesis in strawberry is largely unknown. Here, we show that the transcriptional level of FvMYB10 and key enzyme genes involved in anthocyanin biosynthesis in 'Yellow Wonder' were lower than that in red color variety 'Ruegen', especially at turning to ripening stage. The low expression level of FvmMYB10 may due to his inability to bind to its promoter region and activate its own expression. We found FvMYB10-overexpressing, but not FvmMYB10-overexpressing, promote anthocyanin accumulation in Arabidopsis and strawberry fruit despite of their similar expression levels. In addition, subcellular localization assay indicated that FvMYB10-YFP, but not FvmMYB10-YFP, localized to sub-nucleus foci (speckles) in the nucleus, implying the mutation of FvMYB10 might inhibit its transcription factor activity and eventually interfere with its function. Subsequently, we confirmed that FvMYB10 bind to the promoter region of some specific key enzyme genes, including FvCHS2 and FvDFR1 and activated their expression. While FvmMYB10 failed to binding and transcriptional activating these genes. Our findings provide insights into molecular mechanism of anthocyanin biosynthesis regulated by MYB10 in strawberry fruits.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Huiyun Kuang
- Shanghai Shumei Agriculture Investment Co., Ltd, Shanghai, 201711, China.
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Fan Y, Yang W, Yan Q, Chen C, Li J. Genome-Wide Identification and Expression Analysis of the Protease Inhibitor Gene Families in Tomato. Genes (Basel) 2019; 11:E1. [PMID: 31861342 PMCID: PMC7017114 DOI: 10.3390/genes11010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The protease inhibitors (PIs) in plants are involved primarily in defense against pathogens and pests and in response to abiotic stresses. However, information about the PI gene families in tomato (Solanumlycopersicum), one of the most important model plant for crop species, is limited. In this study, in silico analysis identified 55 PI genes and their conserved domains, phylogenetic relationships, and chromosome locations were characterized. According to genetic structure and evolutionary relationships, the PI gene families were divided into seven families. Genome-wide microarray transcription analysis indicated that the expression of SlPI genes can be induced by abiotic (heat, drought, and salt) and biotic (Botrytiscinerea and tomato spotted wilt virus (TSWV)) stresses. In addition, expression analysis using RNA-seq in various tissues and developmental stages revealed that some SlPI genes were highly or preferentially expressed, showing tissue- and developmental stage-specific expression profiles. The expressions of four representative SlPI genes in response to abscisic acid (ABA), salicylic acid (SA), ethylene (Eth), gibberellic acid (GA). and methyl viologen (MV) were determined. Our findings indicated that PI genes may mediate the response of tomato plants to environmental stresses to balance hormone signals. The data obtained here will improve the understanding of the potential function of PI gene and lay a foundation for tomato breeding and transgenic resistance to stresses.
Collapse
Affiliation(s)
- Yuxuan Fan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Educatio, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.F.); (W.Y.); (Q.Y.); (C.C.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wei Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Educatio, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.F.); (W.Y.); (Q.Y.); (C.C.)
| | - Qingxia Yan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Educatio, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.F.); (W.Y.); (Q.Y.); (C.C.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Chunrui Chen
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Educatio, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.F.); (W.Y.); (Q.Y.); (C.C.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Educatio, College of Horticulture and Landscape Architecture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.F.); (W.Y.); (Q.Y.); (C.C.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
5
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|