1
|
Gonçalves VM. Novel processes to obtain pneumococcal surface proteins for vaccines. Appl Microbiol Biotechnol 2025; 109:90. [PMID: 40210776 PMCID: PMC11985572 DOI: 10.1007/s00253-025-13440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 04/12/2025]
Abstract
Current pneumococcal vaccines are based on the protection offered by capsular polysaccharides from only a few from > 100 serotypes; therefore, serotype-independent vaccines composed of pneumococcal surface proteins are being developed. Despite the immense number of publications on the discovery, characterization, and evaluation of new pneumococcal vaccine candidates, there are very few that describe the bioprocess development, which is an essential step to generate material for pre-clinical and clinical tests, to obtain enough protein amount for physical-chemical, biochemical, and biological characterization, and to understand critical product and process attributes. Here, aspects of production and purification processes of pneumococcal surface proteins are reviewed, the most common bioreactor cultivation strategies are discussed, and important features of the purification process are explored to bring new insights about the correlation between protein structure and chromatography. The process development oriented to an industrial scale is an essential step for the success of novel protein-based pneumococcal vaccines and can preclude problems that could be hardly identified at flask scale production. Moreover, the early bioprocess development should favor a smooth scale-up and transfer of the process to GMP facilities for future production of new pneumococcal vaccines. KEY POINTS: • Early bioprocess development is crucial to advancing pneumococcal protein vaccines. • Bioreactor cultivation can help to identify possible process bottlenecks. • Structural features of similar proteins can orient purification process development.
Collapse
Affiliation(s)
- Viviane Maimoni Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, Av Vital Brasil 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Ayodele T, Tijani A, Liadi M, Alarape K, Clementson C, Hammed A. Biomass-Based Microbial Protein Production: A Review of Processing and Properties. Front Biosci (Elite Ed) 2024; 16:40. [PMID: 39736011 DOI: 10.31083/j.fbe1604040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/31/2024]
Abstract
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice. The production of MPs promotes benefits, including reducing deforestation and CO2 emissions. Several microorganism types, such as bacteria, yeast, fungi, and algae, use a variety of substrates for MP production, from agricultural residues to lignocellulosic biomass. These complex substrates, including lignocellulosic biomass, are converted to fermentable sugar through either chemical, physical, or biological methods. Indeed, fermentation can occur through submerged cultures or other methods. However, this depends on the substrate and microorganisms being utilized. MPs have properties that make them versatile and useful ingredients in various applications. Using residues and lignocellulosic biomass as raw materials for producing MPs offers sustainability, cost-effectiveness, and waste reduction advantages. These properties are consistent with the principles established by green chemistry, which aims to conserve resources effectively and operate sustainably in all areas. This review highlights the importance of studying manufacturing aspects and the characteristics associated with MPs, which can be implemented to solve problems and encourage novel methods in the global food/feed industry.
Collapse
Affiliation(s)
- Tawakalt Ayodele
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Abodunrin Tijani
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Musiliu Liadi
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Kudirat Alarape
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Clairmont Clementson
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
- Agricultural and Biosystems Engineering, Faculty of Agriculture, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
3
|
Qi C, Chen L. Progress of ligand-modified agarose microspheres for protein isolation and purification. Mikrochim Acta 2024; 191:149. [PMID: 38376601 DOI: 10.1007/s00604-024-06224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Proteins are the material basis of life and the primary carriers of life activities, containing various impurities that must be removed before use. To keep pace with the increasing complexity of protein samples, it is essential to constantly work on developing new purification technologies for downstream processes. While traditional downstream purification methods rely heavily on protein A affinity chromatography, there is still a lot of interest in finding safer and more cost-effective alternatives to protein A. Many non-affinity ligands and technologies have also been developed in biological purification recently. Here, the current status of biotechnology and the progress of protein separation technology from 2018 to 2023 are reviewed from the aspects of new preparation methods and new composite materials of commonly used separation media. The research status of new ligands with different mechanisms of action was reviewed, including the expanded application of affinity ligands, the development prospect of biotechnology such as polymer grafting, continuous column technology, and its new applications.
Collapse
Affiliation(s)
- Chongdi Qi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lei Chen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
4
|
Separation and Purification of Hydroxyl-α-Sanshool from Zanthoxylum armatum DC. by Silica Gel Column Chromatography. Int J Mol Sci 2023; 24:ijms24043156. [PMID: 36834566 PMCID: PMC9966115 DOI: 10.3390/ijms24043156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hydroxyl-α-sanshool is the main alkylamide produced by Zanthoxylum armatum DC., and it is responsible for numbness after consuming Z. armatum-flavored dishes or food products. The present study deals with the isolation, enrichment, and purification of hydroxyl-α-sanshool. The results indicated that the powder of Z. armatum was extracted with 70% ethanol and then filtrated; the supernatant was concentrated to get pasty residue. Petroleum ether (60-90 °C) and ethyl acetate at a 3:2 ratio, with an Rf value of 0.23, were chosen as the eluent. Petroleum ether extract (PEE) and ethyl acetate-petroleum ether extract (E-PEE) were used as the suitable enriched method. Afterward, the PEE and E-PEE were loaded onto silica gel for silica gel column chromatography. Preliminary identification was carried out by TLC and UV. The fractions containing mainly hydroxyl-α-sanshool were pooled and dried by rotary evaporation. Lastly, all of the samples were determined by HPLC. The yield and recovery rates of hydroxyl-α-sanshool in the p-E-PEE were 12.42% and 121.65%, respectively, and the purity was 98.34%. Additionally, compared with E-PEE, the purity of hydroxyl-α-sanshool in the purification of E-PEE (p-E-PEE) increased by 88.30%. In summary, this study provides a simple, rapid, economical, and effective approach to the separation of high-purity hydroxyl-α-sanshool.
Collapse
|
5
|
Bacterial chitinase biochemical properties, immobilization on zinc oxide (ZnO) nanoparticle and its effect on Sitophilus zeamais as a potential insecticide. World J Microbiol Biotechnol 2021; 37:173. [PMID: 34519907 DOI: 10.1007/s11274-021-03138-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
It has been planned to minimize the yield and quality impairment of the seed corn, which is strategically important in the world, by pests under storage conditions with a biological product produced with a biotechnological approach. In this context, the present study aimed to control the maize weevil Sitophilus zeamais, known as a warehouse pest, using a nanoformulation. In the study, the chitinase enzyme from Lactobacillus coryniformis was purified first using ammonium sulfate precipitation and then by using the HiTrap Capto DEAE column, and the molecular mass of the purified enzyme was determined to be ~ 33 kDa, and the optimum pH and the values as pH 6.0 and 65-75 °C, respectively. Five different doses of nanoformulation (2, 4, 6, 8 and 10 mg/L) were applied to corn grains by the spraying method with three repetitions so that the insect can ingest the formulation through feeding. The effects of the applications on the death rate and mean time of death of Sitophilus zeamais were determined. According to these findings, it was concluded that the best practice was nanoformulation with 6 mg/L, considering both the mortality rate (100%) and the average death time (2.4 days). Chitinase from L. coryniformis is a promising candidate for corn lice control and management.
Collapse
|
6
|
Guo X, Sun Q, Xi H, Zhang Y, Guo M, Zhang C, Zhu S, Gu T, Kong W, Wu Y. Expression, purification, and characterization of pneumococcal PsaA-PspA fusion protein. Protein Expr Purif 2020; 178:105782. [PMID: 33122039 DOI: 10.1016/j.pep.2020.105782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a gram-positive bacterial pathogen causing invasive pneumonia, meningitis, otitis media, and bacteremia. Owing to the current pitfalls of polysaccharide and polysaccharide-conjugate vaccines, protein vaccines are considered promising candidates against pneumonia. Pneumococcal surface protein A (PspA) and pneumococcal surface adhesin A (PsaA) are virulence proteins showing good immunogenicity and protective effects against S. pneumoniae strains in mice. In this study, we expressed the fusion protein PsaA-PspA, which consists of PsaA and the N-terminal region of PspA family 1 and 2, in Escherichia coli. We describe a novel and effective method to purify PsaA-PspA using hydroxyapatite and two-step chromatography. After determining the optimal induction conditions and a series of purification steps, we obtained PsaA-PspA fusion protein with over 95% purity at a final yield of 22.44% from the starting cell lysate. The molecular weight of PsaA-PspA was approximately 83.6 kDa and its secondary structure was evaluated by circular dichroism. Immunization with the purified protein induced high levels of IgG antibodies in mice. Collectively, these results demonstrate that our purification method can effectively produce high-purity PsaA-PspA fusion protein with biological activity and chemical integrity, which can be widely applied to the purification of other PspA subclass proteins.
Collapse
Affiliation(s)
- Xiaonan Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Qing Sun
- CSPC Biotechnology Company, Shijiazhuang, China
| | - Hualong Xi
- BCHT Biotechnology Company, Changchun, China
| | - Yue Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mengze Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chenxing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shidong Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 2020; 284:102254. [PMID: 32942182 DOI: 10.1016/j.cis.2020.102254] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Protein, as the material basis of vita, is the crucial undertaker of life activities, which constitutes the framework and main substance of human tissues and organs, and takes part in various forms of life activities in organisms. Separating proteins from biomaterials and studying their structures and functions are of great significance for understanding the law of life activities and clarifying the essence of life phenomena. Therefore, scientists have proposed the new concept of proteomics, in which protein separation technology plays a momentous role. It has been diffusely used in the food industry, agricultural biological research, drug development, disease mechanism, plant stress mechanism, and marine environment research. In this paper, combined with the recent research situation, the progress of protein separation technology was reviewed from the aspects of extraction, precipitation, membrane separation, chromatography, electrophoresis, molecular imprinting, microfluidic chip and so on.
Collapse
|