1
|
Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine Protein Ataxin-3. Structure 2020; 29:70-81.e5. [PMID: 33065068 DOI: 10.1016/j.str.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023]
Abstract
Ataxin-3 is a deubiquitinase involved in protein quality control and other essential cellular functions. It preferentially interacts with polyubiquitin chains of four or more units attached to proteins delivered to the ubiquitin-proteasome system. Ataxin-3 is composed of an N-terminal Josephin domain and a flexible C terminus that contains two or three ubiquitin-interacting motifs (UIMs) and a polyglutamine tract, which, when expanded beyond a threshold, leads to protein aggregation and misfolding and causes spinocerebellar ataxia type 3. The high-resolution structure of the Josephin domain is available, but the structural and dynamical heterogeneity of ataxin-3 has so far hindered the structural description of the full-length protein. Here, we characterize non-expanded and expanded variants of ataxin-3 in terms of conformational ensembles adopted by the proteins in solution by jointly using experimental data from nuclear magnetic resonance and small-angle X-ray scattering with coarse-grained simulations. Our results pave the way to a molecular understanding of polyubiquitin recognition.
Collapse
|
2
|
Rosselli-Murai LK, Joseph JG, Lopes-Cendes I, Liu AP, Murai MJ. The Machado-Joseph disease-associated form of ataxin-3 impacts dynamics of clathrin-coated pits. Cell Biol Int 2020; 44:1252-1259. [PMID: 31970864 DOI: 10.1002/cbin.11312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Expansion above a certain threshold in the polyglutamine (polyQ) tract of ataxin-3 is the main cause of neurodegeneration in Machado-Joseph disease. Ataxin-3 contains an N-terminal catalytic domain, called Josephin domain, and a highly aggregation-prone C-terminal domain containing the polyQ tract. Recent work has shown that protein aggregation inhibits clathrin-mediated endocytosis (CME). However, the effects of polyQ expansion in ataxin-3 on CME have not been investigated. We hypothesize that the expansion of the polyQ tract in ataxin-3 could impact CME. Here, we report that both the wild-type and the expanded ataxin-3 reduce transferrin internalization and expanded ataxin-3 impacts dynamics of clathrin-coated pits (CCPs) by reducing CCP nucleation and increasing short-lived abortive CCPs. Since endocytosis plays a central role in regulating receptor uptake and cargo release, our work highlights a potential mechanism linking protein aggregation to cellular dysregulation.
Collapse
Affiliation(s)
- Luciana K Rosselli-Murai
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109, USA.,Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, R. Tessália Vieira de Camargo, 126, Campinas, São Paulo, 13083-970, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology, R. Vital Brasil, 251, Campinas, São Paulo, 13083-888, Brazil
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Marcelo J Murai
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109, USA.,Department of Medical Genetics, School of Medical Sciences, University of Campinas, R. Tessália Vieira de Camargo, 126, Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
3
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|