1
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Jiao YL, Shen PQ, Wang SF, Chen J, Zhou XH, Ma GZ. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties. Curr Microbiol 2023; 80:292. [PMID: 37466752 DOI: 10.1007/s00284-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Arginase has shown promising potential in treating cancers by arginine deprivation therapy; however, low enzymatic activity and stability of arginase are impeding its development. This study was aimed to improve the enzymological properties of a marine bacterial arginase by carboxymethyl chitosan (CMCS) conjugation. An arginase producing marine bacterium Priestia megaterium strain P6 was isolated and identified. The novel arginase PMA from the strain was heterologously expressed, purified, and then conjugated to CMCS by ionic gelation with calcium chloride as the crosslinking agent. Enzymological properties of both PMA and CMCS-PMA conjugate were determined. The optimum temperature for PMA and CMCS-PMA at pH 7 were 60 °C and 55 °C, respectively. The optimum pH for PMA and CMCS-PMA at 37 °C were pH 10 and 9, respectively. CMCS-PMA showed higher thermostability than PMA over 55-70 °C and higher pH stability over pH 4-11 with the highest pH stability at pH 7. At 37 °C and pH of 7, i.e., around the human blood temperature and pH, CMCS-PMA was higher than the free PMA in enzymatic activity and stability by 24% and 21%, respectively. CMCS conjugation not only changed the optimum temperature, optimum pH, and enzymatic activity of PMA, but also improved its pH stability and temperature stability, and thus made it more favorable for medical application.
Collapse
Affiliation(s)
- Yu Liang Jiao
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China.
| | - Pin Quan Shen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Shu Fang Wang
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Jing Chen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Xiang Hong Zhou
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Gui Zhen Ma
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|