2
|
Refolding of metacaspase 5 from Trypanosoma cruzi, structural characterization and the influence of c-terminal in protein recombinant production. Protein Expr Purif 2021; 191:106007. [PMID: 34728367 DOI: 10.1016/j.pep.2021.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Metacaspases are known to have a fundamental role in apoptosis-like, a programmed cellular death (PCD) in plants, fungi, and protozoans. The last includes several parasites that cause diseases of great interest to public health, mostly without adequate treatment and included in the neglected tropical diseases category. One of them is Trypanosoma cruzi which causes Chagas disease and has two metacaspases involved in its PCD: TcMCA3 and TcMCA5. Their roles seemed different in PCD, TcMCA5 appears as a proapoptotic protein negatively regulated by its C-terminal sequence, while TcMCA3 is described as a cell cycle regulator. Despite this, the precise role of TcMCA3 and TcMCA5 and their atomic structures remain elusive. Therefore, developing methodologies to allow investigations of those metacaspases is relevant. Herein, we produced full-length and truncated versions of TcMCA5 and applied different strategies for their folded recombinant production from E. coli inclusion bodies. Biophysical assays probed the efficacy of the production method in providing a high yield of folded recombinant TcMCA5. Moreover, we modeled the TcMCA5 protein structure using experimental restraints obtained by XLMS. The experimental design for novel methods and the final protocol provided here can guide studies with other metacaspases. The production of TcMCA5 allows further investigations as protein crystallography, HTS drug discovery to create potential therapeutic in the treatment of Chagas' disease and in the way to clarify how the PCD works in the parasite.
Collapse
|
3
|
de Souza HADS, Escafa VF, Blanco CM, Baptista BDO, de Barros JP, Riccio EKP, Rodrigues ABM, Melo GCD, Lacerda MVGD, de Souza RM, Lima-Junior JDC, Guimarães ACR, da Mota FF, da Silva JHM, Daniel-Ribeiro CT, Pratt-Riccio LR, Totino PRR. Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain is conserved in field isolates from Brazilian Amazon. Mem Inst Oswaldo Cruz 2021; 116:e200584. [PMID: 34076074 PMCID: PMC8186469 DOI: 10.1590/0074-02760200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the genetic diversity of Plasmodium vivax metacaspase 1 (PvMCA1) catalytic domain in two municipalities of the main malaria hotspot in Brazil, i.e., the Juruá Valley, and observed complete sequence identity among all P. vivax field isolates and the Sal-1 reference strain. Analysis of PvMCA1 catalytic domain in different P. vivax genomic sequences publicly available also revealed a high degree of conservation worldwide, with very few amino acid substitutions that were not related to putative histidine and cysteine catalytic residues, whose involvement with the active site of protease was herein predicted by molecular modeling. The genetic conservation presented by PvMCA1 may contribute to its eligibility as a druggable target candidate in vivax malaria.
Collapse
Affiliation(s)
| | - Victor Fernandes Escafa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Carolina Moreira Blanco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Bárbara de Oliveira Baptista
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Jenifer Peixoto de Barros
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Evelyn Ketty Pratt Riccio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Aline Beatriz Mello Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Gisely Cardoso de Melo
- Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Fundação de Medicina Tropical Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Marcus Vinícius Guimarães de Lacerda
- Fundação de Medicina Tropical Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas and Maria Deane, Manaus, AM, Brasil
| | - Rodrigo Medeiros de Souza
- Universidade Federal do Acre, Centro de Pesquisa em Doenças Infecciosas, Centro Multidisciplinar, Rio Branco, AC, Brasil
| | - Josué da Costa Lima-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Fabio Faria da Mota
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Computacional e Sistemas, Rio de Janeiro, RJ, Brasil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Lilian Rose Pratt-Riccio
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Paulo Renato Rivas Totino
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Eyssen LEA, Coetzer TH. Validation of ligands targeting metacaspase-2 (MCA2) from Trypanosoma brucei brucei and their application to MCA5 from T. congolense as possible trypanocides. J Mol Graph Model 2020; 97:107579. [PMID: 32197135 DOI: 10.1016/j.jmgm.2020.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
Metacaspases (MCAs) are ideal drug and diagnostic targets for animal and human African trypanosomiasis, as these cysteine peptidases are absent from the metazoan kingdom and have been implicated in the parasite cell cycle and cell death. Tsetse fly-transmitted trypanosomes that live free in the bloodstream and/or cerebrospinal fluid of the mammalian host cause animal and human African trypanosomiasis (nagana or sleeping sickness respectively). Chemotherapy and chemoprophylaxis are the main forms of control, but in contrast to human trypanocides, the veterinary drugs are old and drug resistance is on the increase. A peptidomimetic library targeting the MCA2 from Trypanosoma brucei brucei has ligands with low IC50 values, some of which were antiparasitic. This study validates the inhibitory activity of these ligands using the protein structure solved by X-ray diffraction after the ligand library was published. Water molecules were shown to be important in substrate binding and strategies to improve the efficacy of these ligands are highlighted. These ligands appear to be pan-specific as they were docked into the active site of the homology modelled MCA5 of animal infective Trypanosoma congolense with similar binding energies and conformations.
Collapse
Affiliation(s)
- L E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa Ht Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|