1
|
Qin J, Li B, Zhu M, Chen C, Xu B, Luo H, Li P. Colour formation by bacterial nitric oxide synthase in fermented sausages inoculated with and without Mammaliicoccus vitulinus. Meat Sci 2025; 225:109804. [PMID: 40073497 DOI: 10.1016/j.meatsci.2025.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
In the present study, a Bacillus subtilis expression system was used to overexpress the gene of nitric oxide synthase (NOS), and the NOS was subsequently purified and added to fermented sausages to assess its colouration ability. The results indicated that NOS activity in the nos-recombinant strain was approximately 58-fold higher than that in the wild-type strain (P < 0.05). In a meat model system supplemented with metmyoglobin, the addition of NOS alone exhibited a significant effect on colour formation (P < 0.05), whereas inoculation with Mammaliicoccus vitulinus enhanced the red colour (P < 0.05). The results of the ultraviolet-visible (UV-vis) spectral analysis showed that more nitrosyl myoglobin (NO-Mb) was formed in the model system. In fermented sausages, the addition of NOS together with the inoculation of M. vitulinus led to a significant increase in the concentration of NO-Mb and the redness value (P < 0.05). The present study offers a potential solution for enhancing the colour formation in fermented sausages using an enzymatic method.
Collapse
Affiliation(s)
- Jiaying Qin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bingyu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miaomiao Zhu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huiting Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Zhang Z, Guo K, Chu X, Liu M, Du C, Hu Z, Wang X. Development and evaluation of a test strip for the rapid detection of antibody against equine infectious anemia virus. Appl Microbiol Biotechnol 2024; 108:85. [PMID: 38189948 PMCID: PMC10774152 DOI: 10.1007/s00253-023-12980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Equine infectious anemia (EIA) is a contagious disease of horses caused by the equine infectious anemia virus (EIAV). The clinical signs at the acute phase include intermittent high fever, thrombocytopenia, hemorrhage, edema, and anemia. The clinical signs at chronic and relapsing subclinical levels include emaciation and progressive weakness. Surviving horses become lifelong carriers because of the integration of the viral genome into that of the host, and these horses can produce and transmit the virus to other animals. This increases the difficulty of imposing practical control measures to prevent epidemics of this disease. Serological tests measuring the antibodies in equine sera are considered to be a reliable tool for the long-term monitoring of EIA. However, the standard serological tests for EIV either have low sensitivity (e.g., agar gel immunodiffusion test, AGID) or are time consuming to perform (e.g., ELISA and western blotting). The development of a rapid and simple method for detecting the disease is therefore critical to control the spread of EIA. In this study, we designed and developed a colloidal gold immunochromatographic (GICG) test strip to detect antibodies against EIAV based on the double-antigen sandwich. Both the p26 and gp45 proteins were used as the capture antigens, which may help to improve the positive detection rate of the strip. We found that the sensitivity of the test strip was 8 to 16 times higher than those of two commercially available ELISA tests and 128 to 256 times higher than AGID, but 8 to 16 times lower than that of western blotting. The strip has good specificity and stability. When serum samples from experimental horses immunized with the attenuated EIAV vaccine (n = 31) were tested, the results of the test strip showed 100% coincidence with those from NECVB-cELISA and 70.97% with AGID. When testing clinical serum samples (n = 1014), the test strip surprisingly provided greater sensitivity and a higher number of "true positive" results than other techniques. Therefore, we believe that the GICG test strip has demonstrated great potential in the field trials as a simple and effective tool for the detection of antibodies against EIAV. KEY POINTS: • A colloidal gold immunochromatographic (GICG) fast test strip was developed with good specificity, sensitivity, stability, and repeatability • The test strip can be used in point-of-care testing for the primary screening of EIAV antibodies • Both the p26 and gp45 proteins were used as the capture antigens, giving a high positive detection rate in the testing of experimentally infected animal and field samples.
Collapse
Affiliation(s)
- Zenan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kui Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingru Liu
- Shenzhen Lvshiyuan Biotechnology Co., Shenzhen, China
| | - Cheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
3
|
Augustine J, Baksh KA, Prosser RS, Zamble DB. Insights into the Allosteric Response to Acidity by the Helicobacter pylori NikR Transcription Factor. Biochemistry 2023; 62:3265-3275. [PMID: 37917856 DOI: 10.1021/acs.biochem.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel-responsive transcription factor that regulates genes involved in nickel homeostasis, which is essential for the survival of this pathogen within the acidic human stomach. HpNikR also responds to drops in pH and regulates genes controlling acid acclimation of the bacteria, independently of nickel. We previously showed that nickel binding biases the conformational ensemble of HpNikR to the more DNA-binding competent states via an allosteric network of residues encompassing the nickel binding sites and the interface between the metal- and DNA-binding domains. Here, we examine how acidity promotes this response using 19F-NMR, mutagenesis, and DNA-binding studies. 19F-NMR revealed that a drop in pH from 7.6 to 6.0 does little to shift the conformational ensemble of HpNikR to the DNA binding-compatible cis conformer. Nevertheless, DNA-binding affinities of apo-HpNikR at pH 6.0 and Ni(II)-HpNikR at pH 7.6 are comparable for the ureA promoter. Histidine residues of the nickel binding sites were shown to be important for pH-dependent DNA binding and thus likely impart positive charge to the protein, initiating long-range electrostatic interactions with DNA that induce DNA complexation. The results point to a different DNA-binding mechanism in response to acidity compared to the conformational selection mechanism in response to nickel and overall provide new insights into the influence of pH on HpNikR activity, which contributes to H. pylori viability.
Collapse
Affiliation(s)
- Jerry Augustine
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Metal-Responsive Transcription Factors Co-Regulate Anti-Sigma Factor (Rsd) and Ribosome Dimerization Factor Expression. Int J Mol Sci 2023; 24:ijms24054717. [PMID: 36902154 PMCID: PMC10003395 DOI: 10.3390/ijms24054717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteria exposed to stress survive by regulating the expression of several genes at the transcriptional and translational levels. For instance, in Escherichia coli, when growth is arrested in response to stress, such as nutrient starvation, the anti-sigma factor Rsd is expressed to inactivate the global regulator RpoD and activate the sigma factor RpoS. However, ribosome modulation factor (RMF) expressed in response to growth arrest binds to 70S ribosomes to form inactive 100S ribosomes and inhibit translational activity. Moreover, stress due to fluctuations in the concentration of metal ions essential for various intracellular pathways is regulated by a homeostatic mechanism involving metal-responsive transcription factors (TFs). Therefore, in this study, we examined the binding of a few metal-responsive TFs to the promoter regions of rsd and rmf through promoter-specific TF screening and studied the effects of these TFs on the expression of rsd and rmf in each TF gene-deficient E. coli strain through quantitative PCR, Western blot imaging, and 100S ribosome formation analysis. Our results suggest that several metal-responsive TFs (CueR, Fur, KdpE, MntR, NhaR, PhoP, ZntR, and ZraR) and metal ions (Cu2+, Fe2+, K+, Mn2+, Na+, Mg2+, and Zn2+) influence rsd and rmf gene expression while regulating transcriptional and translational activities.
Collapse
|
5
|
Baksh KA, Augustine J, Sljoka A, Prosser RS, Zamble DB. Mechanistic insights into the nickel-dependent allosteric response of the Helicobacter pylori NikR transcription factor. J Biol Chem 2022; 299:102785. [PMID: 36502919 PMCID: PMC9860126 DOI: 10.1016/j.jbc.2022.102785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
In Helicobacter pylori, the nickel-responsive NikR transcription factor plays a key role in regulating intracellular nickel concentrations, which is an essential process for survival of this pathogen in the acidic human stomach. Nickel binding to H. pylori NikR (HpNikR) allosterically activates DNA binding to target promoters encoding genes involved in nickel homeostasis and acid adaptation, to either activate or repress their transcription. We previously showed that HpNikR adopts an equilibrium between an open conformation and DNA-binding competent cis and trans states. Nickel binding slows down conformational exchange between these states and shifts the equilibrium toward the binding-competent states. The protein then becomes stabilized in a cis conformation upon binding the ureA promoter. Here, we investigate how nickel binding creates this response and how it is transmitted to the DNA-binding domains. Through mutagenesis, DNA-binding studies, and computational methods, the allosteric response to nickel was found to be propagated from the nickel-binding sites to the DNA-binding domains via the β-sheets of the metal-binding domain and a network of residues at the inter-domain interface. Our computational results suggest that nickel binding increases protein rigidity to slow down the conformational exchange. A thymine base in the ureA promoter sequence, known to be critical for high affinity DNA binding by HpNikR, was also found to be important for the allosteric response, while a modified version of this promoter further highlighted the importance of the DNA sequence in modulating the response. Collectively, our results provide insights into regulation of a key protein for H. pylori survival.
Collapse
Affiliation(s)
- Karina A. Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jerry Augustine
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, Chuo-ku, Tokyo, Japan,For correspondence: R. Scott Prosser; Adnan Sljoka
| | - R. Scott Prosser
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada,For correspondence: R. Scott Prosser; Adnan Sljoka
| | - Deborah B. Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
He S, Xu R, Yi H, Chen Z, Chen C, Li Q, Han Q, Xia X, Song Y, Xu J, Zhang J. Development of alkaline phosphatase-scFv and its use for one-step enzyme-linked immunosorbent assay for His-tagged protein detection. Open Life Sci 2022; 17:1505-1514. [DOI: 10.1515/biol-2022-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
A histidine (His)-tag is composed of six His residues and typically exerts little influence on the structure and solubility of expressed recombinant fusion proteins. Purification methods for recombinant proteins containing His-tags are relatively well-established, thus His-tags are widely used in protein recombination technology. We established a one-step enzyme-linked immunosorbent assay (ELISA) for His-tagged recombinant proteins. We analyzed variable heavy and light chains of the anti-His-tag monoclonal antibody 4C9 and used BLAST analyses to determine variable zones in light (VL) and heavy chains (VH). VH, VL, and alkaline phosphatase (ALP) regions were connected via a linker sequence and ligated into the pGEX-4T-1 expression vector. Different recombinant proteins with His tags were used to evaluate and detect ALP-scFv activity. Antigen and anti-His-scFv-ALP concentrations for direct ELISA were optimized using the checkerboard method. ZIKV-NS1, CHIKV-E2, SCRV-N, and other His-tag fusion proteins demonstrated specific reactions with anti-His-scFv-ALP, which were accurate and reproducible when the antigen concentration was 50 µg mL−1 and the antibody concentration was 6.25 µg mL−1. For competitive ELISA, we observed a good linear relationship when coating concentrations of recombinant human anti-Müllerian hormone (hAMH) were between 0.78 and 12.5 µg mL−1. Our direct ELISA method is simple, rapid, and accurate. The scFv antibody can be purified using a prokaryotic expression system, which provides uniform product quality and reduces variations between batches.
Collapse
Affiliation(s)
- Shuzhen He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Huashan Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang , Chongqing 402460 , China
| | - Zhixin Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Congjie Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qiang Li
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Junwei Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
7
|
Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response. Vaccines (Basel) 2022; 10:vaccines10111839. [PMID: 36366348 PMCID: PMC9692485 DOI: 10.3390/vaccines10111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.
Collapse
|
8
|
Kalra P, Zahid H, Ayoub A, Dou Y, Pomerantz WCK. Alternative Mechanisms for DNA Engagement by BET Bromodomain-Containing Proteins. Biochemistry 2022; 61:1260-1272. [PMID: 35748495 PMCID: PMC9682295 DOI: 10.1021/acs.biochem.2c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Alex Ayoub
- Department of Pathology, University of Michigan, 1301 Catherine St., Ann Arbor, Michigan 48109, United States
| | - Yali Dou
- Norris Comprehensive Cancer Center, University of Southern California, NOR 6314A, 1441 Eastlake Ave., Los Angeles, California 90089, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Gallego Del Sol F, Quiles-Puchalt N, Brady A, Penadés JR, Marina A. Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nat Commun 2022; 13:3627. [PMID: 35750663 PMCID: PMC9232636 DOI: 10.1038/s41467-022-31144-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The arbitrium system is employed by phages of the SPbeta family to communicate with their progeny during infection to decide either to follow the lytic or the lysogenic cycle. The system is controlled by a peptide, AimP, that binds to the regulator AimR, inhibiting its DNA-binding activity and expression of aimX. Although the structure of AimR has been elucidated for phages SPβ and phi3T, there is still controversy regarding the molecular mechanism of AimR function, with two different proposed models for SPβ. In this study, we deepen our understanding of the system by solving the structure of an additional AimR that shows chimerical characteristics with the SPβ receptor. The crystal structures of this AimR (apo, AimP-bound and DNA-bound) together with in vitro and in vivo analyses confirm a mechanism of action by AimP-induced conformational restriction, shedding light on peptide specificity and cross regulation with relevant biological implications.
Collapse
Affiliation(s)
- Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Nuria Quiles-Puchalt
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Aisling Brady
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
10
|
Avsar B. Effective Strategies for Heterologous Expression of Plant Heterotrimeric
G-protein γ Subunits without Gβ Subunit Partners. Protein Pept Lett 2022; 29:429-439. [DOI: 10.2174/0929866529666220203094448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
In plants, heterotrimeric G-protein (Gγ) subunits are diverse, and they have
structural plasticity to provide functional selectivity to the heterotrimer. Although the Gβ and Gγ
subunits dimerize to function in the signaling pathway, the interaction mechanism of various Gγ
subunits with the Gβ subunit partners is still elusive.
Objective:
To better understand the interaction mechanism, one approach is to separate the subunits
for the re-assembly in vitro. Hence, developing a reliable method for achieving the efficient
production and purification of these proteins has become necessary.
Method:
In this study, Gγ1 and Gγ2 proteins from Oryza sativa and Arabidopsis thaliana were
successfully identified, cloned, expressed in bacteria, and purified as recombinant proteins with the
fusion tags. Highly expressed recombinant Gγ subunits in E. coli were digested by proteases, which
were also produced in the presented study.
Results:
Preliminary structural characterization studies without the Gβ partners showed that Gγ1
proteins have disordered structures with coiled-coil, α-helix extensions, and loops, whereas the Gγ2
protein has a more dominant β-sheet and turns structure. Finally, computational analyses performed
on Gγ genes have laid the foundation of new targets for biotechnological purposes.
Conclusion:
The proposed optimized expression and purification protocol can contribute to
investigations on the Gβγ binding mechanism in plant G-protein signaling. The investigations on
selective binding are critical to shed light on the role(s) of different plant Gγ subunit types in
biological processes.
Collapse
Affiliation(s)
- Bihter Avsar
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey
| |
Collapse
|
11
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
12
|
Baksh KA, Pichugin D, Prosser RS, Zamble DB. Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori. J Biol Chem 2021; 296:100069. [PMID: 33199369 PMCID: PMC7949043 DOI: 10.1074/jbc.ra120.015459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/20/2022] Open
Abstract
Nickel is essential for the survival of the pathogenic bacteria Helicobacter pylori in the fluctuating pH of the human stomach. Due to its inherent toxicity and limited availability, nickel homeostasis is maintained through a network of pathways that are coordinated by the nickel-responsive transcription factor NikR. Nickel binding to H. pylori NikR (HpNikR) induces an allosteric response favoring a conformation that can bind specific DNA motifs, thereby serving to either activate or repress transcription of specific genes involved in nickel homeostasis and acid adaptation. Here, we examine how nickel induces this response using 19F-NMR, which reveals conformational and dynamic changes associated with nickel-activated DNA complex formation. HpNikR adopts an equilibrium between an open state and DNA-binding competent states regardless of nickel binding, but a higher level of dynamics is observed in the absence of metal. Nickel binding shifts the equilibrium toward the binding-competent states and decreases the mobility of the DNA-binding domains. The nickel-bound protein is then able to adopt a single conformation upon binding a target DNA promoter. Zinc, which does not promote high-affinity DNA binding, is unable to induce the same allosteric response as nickel. We propose that the allosteric mechanism of nickel-activated DNA binding by HpNikR is driven by conformational selection.
Collapse
Affiliation(s)
- Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Robert Scott Prosser
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Deborah B Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Ji X, Han T, Kang N, Huang S, Liu Y. Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci 2020; 260:118274. [PMID: 32827545 DOI: 10.1016/j.lfs.2020.118274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
AIMS Triple-negative breast cancer (TNBC) is not sensitive to current endocrine treatments, so new treatment strategies need to be explored. Based on previous antitumour studies on anti-TNFα nanobody, we designed a novel fusion nanobody to enhance antitumour activity of the anti-TNFα nanobody in TNBC. MAIN METHODS The RGD4C contains RGD sequence, which is the smallest recognition unit binding to the αvβ3 receptor on tumour cell membranes and involved in tumour cell adhesion, proliferation, and metastasis. RGD4C was fused to anti-TNFα nanobody to investigate the antitumour activity in vitro and in vivo. KEY FINDINGS The antitumour effects of fusion nanobody V-L-R-H could effectively bind to αvβ3 and inhibit cell migration and proliferation of MDA-MB-231, which had satisfying purification efficiency and approving antigen or receptor binding activity. V-L-R-H could inhibit the TNFα-mediated PI3K/AKT/NF-κB signal pathway and integrin αvβ3 correlative FAK focal adhesion signal pathway. Mouse xenograft tumour experiments showed that the V-L-R-H could inhibit tumour proliferation and metastasis; reduce the TNFα, HIFα, Ki67, and CD31 concentrations in tumour; and inhibit the process of epithelial-mesenchymal transition. SIGNIFICANCE The fusion nanobody enhanced antitumour activity of the anti-TNFα nanobody on TNBC. It provided a reference for the design of dual functional fusion proteins and development of tumour treatment strategies of antagonistic TNFα and αvβ3, and a new therapeutic strategy and research direction for the treatment of TNBC.
Collapse
Affiliation(s)
- Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Tianzhen Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Nannan Kang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Song Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|