1
|
Hyrslova I, Kana A, Nesporova V, Mrvikova I, Doulgeraki AI, Lampova B, Doskocil I, Musilova S, Kieliszek M, Krausova G. In vitro digestion and characterization of selenized Saccharomyces cerevisiae, Pichia fermentans and probiotic Saccharomyces boulardii. J Trace Elem Med Biol 2024; 83:127402. [PMID: 38310829 DOI: 10.1016/j.jtemb.2024.127402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.
Collapse
Affiliation(s)
- Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic.
| | - Antonin Kana
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vera Nesporova
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Agapi I Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Barbora Lampova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Sarka Musilova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic
| |
Collapse
|
2
|
Dowling NV, Naumann TA, Price NPJ, Rose DR. Crystal structure of a polyglycine hydrolase determined using a RoseTTAFold model. Acta Crystallogr D Struct Biol 2023; 79:168-176. [PMID: 36762862 PMCID: PMC9912923 DOI: 10.1107/s2059798323000311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Polyglycine hydrolases (PGHs) are secreted fungal proteases that cleave the polyglycine linker of Zea mays ChitA, a defensive chitinase, thus overcoming one mechanism of plant resistance to infection. Despite their importance in agriculture, there has been no previous structural characterization of this family of proteases. The objective of this research was to investigate the proteolytic mechanism and other characteristics by structural and biochemical means. Here, the first atomic structure of a polyglycine hydrolase was identified. It was solved by X-ray crystallography using a RoseTTAFold model, taking advantage of recent technical advances in structure prediction. PGHs are composed of two domains: the N- and C-domains. The N-domain is a novel tertiary fold with an as-yet unknown function that is found across all kingdoms of life. The C-domain shares structural similarities with class C β-lactamases, including a common catalytic nucleophilic serine. In addition to insights into the PGH family and its relationship to β-lactamases, the results demonstrate the power of complementing experimental structure determination with new computational techniques.
Collapse
Affiliation(s)
- Nicole V. Dowling
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Todd A. Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - Neil P. J. Price
- Renewable Product Technology Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL 61604, USA
| | - David R. Rose
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|