1
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024; 24:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
2
|
Peng X, Tao H, Xia F, Zhu M, Yang M, Liu K, Hou B, Li X, Li S, He Y, Huan W, Gao F. Molecular design, construction and analgesic mechanism insights into the novel transdermal fusion peptide ANTP-BgNPB. Bioorg Chem 2024; 148:107482. [PMID: 38795582 DOI: 10.1016/j.bioorg.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.
Collapse
Affiliation(s)
- Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bowen Hou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xintong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Suwan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanling He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Shahab M, Iqbal MW, Ahmad A, Alshabrmi FM, Wei DQ, Khan A, Zheng G. Immunoinformatics-driven In silico vaccine design for Nipah virus (NPV): Integrating machine learning and computational epitope prediction. Comput Biol Med 2024; 170:108056. [PMID: 38301512 DOI: 10.1016/j.compbiomed.2024.108056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Muhammad Waleed Iqbal
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Abbas Ahmad
- Department of Biotechnology Abdul Wali Khan University Mardan, Pakistan
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China; Center for Microbiome Research, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Guojun Zheng
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, Wei DQ, Zheng G. Immunoinformatics-based potential multi-peptide vaccine designing against Jamestown Canyon Virus (JCV) capable of eliciting cellular and humoral immune responses. Int J Biol Macromol 2023; 253:126678. [PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abbas Khan
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Dong-Qing Wei
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guojun Zheng
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China.
| |
Collapse
|