1
|
Pawloski W, Gruschus JM, Opina A, Vasalatiy O, Tjandra N. Evaluating the use of lanthanide containing dendrimers for solvent paramagnetic relaxation enhancement. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00468-9. [PMID: 40208391 DOI: 10.1007/s10858-025-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Paramagnetic relaxation enhancement (PRE) is widely used in biomolecular NMR spectroscopy to obtain long-range distance and orientational information for intra- or intermolecular interactions. In contrast to conventional PRE measurements, which require tethering small molecules containing either a radical or paramagnetic ion to specific sites on the target protein, solvent PRE (sPRE) experiments utilize paramagnetic cosolutes to induce a delocalized PRE effect. Compounds developed as contrast agents in magnetic resonance imaging (MRI) applications typically consist of Gd chelated by a small molecule. Coordinating these Gd-containing small molecules to larger and inert scaffolds has been shown to increase the PRE-effect and produce more effective contrast agents in MRI. Inspired by their use as MRI contrast agent, in this work we evaluate the effectiveness of using a functionalized polyamidoamine (PAMAM) dendrimer for sPRE measurements. Using ubiquitin as a model system, we measured the sPRE effect from a generation 5 PAMAM dendrimer (G5-Gd) as a function of temperature and pH and compared to conventional relaxation agents. We also demonstrated the utility of G5-Gd in sPRE studies to monitor changes in the structures of two proteins as they bind their ligands. These studies highlight the attractive properties of these macromolecular relaxation agents in biomolecular sPRE.
Collapse
Affiliation(s)
- Westley Pawloski
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA
| | - James M Gruschus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA
| | - Ana Opina
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Cotten ML, Starich MR, He Y, Yin J, Yuan Q, Tjandra N. NMR chemical shift assignment of Drosophila odorant binding protein 44a in complex with 8(Z)-eicosenoic acid. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:129-134. [PMID: 38822991 PMCID: PMC11511771 DOI: 10.1007/s12104-024-10178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
The odorant binding protein, OBP44a is one of the most abundant proteins expressed in the brain of the developing fruit fly Drosophila melanogaster. Its cellular function has not yet been determined. The OBP family of proteins is well established to recognize hydrophobic molecules. In this study, NMR is employed to structurally characterize OBP44a. NMR chemical shift perturbation measurements confirm that OBP44a binds to fatty acids. Complete assignments of the backbone chemical shifts and secondary chemical shift analysis demonstrate that the apo state of OBP44a is comprised of six α-helices. Upon binding 8(Z)-eicosenoic acid (8(Z)-C20:1), the OBP44a C-terminal region undergoes a conformational change, from unstructured to α-helical. In addition to C-terminal restructuring upon ligand binding, some hydrophobic residues show dramatic chemical shift changes. Surprisingly, several charged residues are also strongly affected by lipid binding. Some of these residues could represent key structural features that OBP44a relies on to perform its cellular function. The NMR chemical shift assignment is the first step towards characterizing the structure of OBP44a and how specific residues might play a role in lipid binding and release. This information will be important in deciphering the biological function of OBP44a during fly brain development.
Collapse
Affiliation(s)
- Myriam L Cotten
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Mary R Starich
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Yin J, Chen HL, Grigsby-Brown A, He Y, Cotten ML, Short J, Dermady A, Lei J, Gibbs M, Cheng ES, Zhang D, Long C, Xu L, Zhong T, Abzalimov R, Haider M, Sun R, He Y, Zhou Q, Tjandra N, Yuan Q. Glia-derived secretory fatty acid binding protein Obp44a regulates lipid storage and efflux in the developing Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588417. [PMID: 38645138 PMCID: PMC11030299 DOI: 10.1101/2024.04.10.588417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Glia derived secretory factors play diverse roles in supporting the development, physiology, and stress responses of the central nervous system (CNS). Through transcriptomics and imaging analyses, we have identified Obp44a as one of the most abundantly produced secretory proteins from Drosophila CNS glia. Protein structure homology modeling and Nuclear Magnetic Resonance (NMR) experiments reveal Obp44a as a fatty acid binding protein (FABP) with a high affinity towards long-chain fatty acids in both native and oxidized forms. Further analyses demonstrate that Obp44a effectively infiltrates the neuropil, traffics between neuron and glia, and is secreted into hemolymph, acting as a lipid chaperone and scavenger to regulate lipid and redox homeostasis in the developing brain. In agreement with this essential role, deficiency of Obp44a leads to anatomical and behavioral deficits in adult animals and elevated oxidized lipid levels. Collectively, our findings unveil the crucial involvement of a noncanonical lipid chaperone to shuttle fatty acids within and outside the brain, as needed to maintain a healthy brain lipid environment. These findings could inspire the design of novel approaches to restore lipid homeostasis that is dysregulated in CNS diseases.
Collapse
Affiliation(s)
- Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Hsueh-Ling Chen
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Anna Grigsby-Brown
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Myriam L Cotten
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR
| | - Jacob Short
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Aidan Dermady
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jingce Lei
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Mary Gibbs
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ethan S Cheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dean Zhang
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Caixia Long
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Lele Xu
- Advanced Science Research Center, The City University of New York, New York, NY
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY
| | - Tiffany Zhong
- Neuroscience Program, Princeton University, Princeton, NJ
| | - Rinat Abzalimov
- Advanced Science Research Center, The City University of New York, New York, NY
| | - Mariam Haider
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN
| | - Rong Sun
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN
| | - Ye He
- Advanced Science Research Center, The City University of New York, New York, NY
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY
| | - Qiangjun Zhou
- Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|